
DX

Software Development Kit

User Guide
Exar Confidential

USR-0039-A04 © Exar®, Inc. All rights reserved. 05/14

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language in any form by any means without the written permission of Exar Corporation.

Licensing and Government Use

Any Exar software (“Licensed Programs”) based on Hifn Technology described in this document is furnished
under a license and may be used and copied only in accordance with the terms of such license and with the
inclusion of this copyright notice. Distribution of this document or any copies thereof and the ability to
transfer title or ownership of this document’s contents are subject to the terms of such license.
Such Licensed Programs and their documentation may contain public open-source software that would be
licensed under open-source licenses. Refer to the applicable product release notes for open-source licenses
and proprietary notices. Use, duplication, disclosure, and acquisition by the U.S. Government of such Licensed
Programs is subject to the terms and definitions of their applicable license.

Disclaimer

Exar reserves the right to make changes to its products, including the contents of this document, or to
discontinue any product or service without notice. Exar advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied upon is current. Every
effort has been made to keep the information in this document current and accurate as of the date of this
document’s publication or revision.

Limited Warranty

Exar warrants Products based on the Hifn Technology, including cards, against defects in materials and
workmanship for a period of twelve (12) months from the delivery date. Exar's sole liability shall be limited to
either, replacing, repairing or issuing credit, at its option, for the Product if it has been paid for. Exar will not
be liable under this provision unless: (a) Exar is promptly notified in writing upon discovery of claimed defects
by Buyer; (b) The claimed defective Product is returned to Exar, insurance and transportation charges
prepaid, by Buyer; (c) The claimed defective Product is received within twelve (12) months from the delivery
date; and (d) Exar's examination of the Product discloses to its satisfaction that the alleged defect was not
caused by misuse, neglect, improper installation, repair, alteration, accident or other hazard. THIS
WARRANTY DOES NOT COVER PRODUCT DAMAGE WHICH RESULTS FROM ACCIDENT, MISUSE, ABUSE,
IMPROPER LINE VOLTAGE, FIRE, FLOOD, LIGHTNING OR OTHER ACTS OF GOD OR DAMAGE RESULTING FROM
ANY MODIFICATIONS, REPAIRS OR ALTERATIONS PERFORMED OTHER THAN BY EXAR OR EXAR'S
AUTHORIZED AGENT OR RESULTING FROM FAILURE TO STRICTLY COMPLY WITH EXAR'S WRITTEN
OPERATING AND MAINTENANCE INSTRUCTIONS. BUYER ACKNOWLEDGES THAT THE PRODUCT ARE HIGHLY
SENSITIVE ELECTRONIC PRODUCT REQUIRING SPECIAL HANDLING AND THAT THIS WARRANTY DOES NOT
APPLY TO IMPROPERLY HANDLED PRODUCT. PRODUCT MANUFACTURED TO MEET BUYER'S SPECIFIC
PERFORMANCE SPECIFICATIONS ACCEPTED BY EXAR ARE WARRANTED ONLY TO PERFORM IN CONFORMITY
WITH SUCH SPECIFICATIONS, AND ARE WARRANTED ONLY AGAINST DEFECTS NOT RELATED TO SUCH
SPECIFICATIONS IN ACCORDANCE WITH THE TERMS AND CONDITIONS SET FORTH HEREIN ABOVE.

Life Support Policy

Exar's Product are not authorized for use as critical components in life support devices or systems. Life
support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to perform, when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury or
death to human life. A critical component is any component of a life support device or system whose failure to
perform can be reasonably expected to cause the failure of the life support device or system, or to affect its
safety or effectiveness. Buyer agrees to indemnify, defend and hold Exar harmless for any cost, loss, liability,
or expense (including without limitation attorneys' fees and other costs of litigation or threatened litigation)
arising out of violation of the above prohibition by Buyer or any person or entity receiving Exar's Product
through Buyer.

Patent Infringement - Indemnification

Exar agrees, at its own expense, to defend Buyer from and against any claim, suit or proceeding, and to pay
all judgments and costs finally awarded against Buyer by reason of claim, suit or proceeding insofar as it is
based upon an allegation that the Product as furnished by Exar infringes any United States letter patent,
provided that Exar is notified promptly of such claim in writing and is given authority and full and proper
information and assistance (at Exar's expense) for defense of same. In case such Product are finally
constituted an infringement and the use of Product is enjoined, Exar shall at its sole discretion and at its own
expense: (1) procure for Buyer the right to continue using the Product; (2) replace or modify the same so that
it becomes non-infringing; or (3) remove such Product and grant Buyer a credit for the depreciated value of
the same.
Buyer shall have the right to employ separate counsel in any claim, suit or proceeding and to participate in
the defense thereof, but the fees and expenses of Buyer's counsel shall not be borne by Exar unless: (1) Exar
specifically so agrees; or (2) Exar, after written request and without cause, does not assume such defense.
Exar shall not be liable to indemnify Buyer for any settlement effected without Exar's written consent, unless
Exar failed, after notice and without cause, to defend such claim, suit or proceeding.
The indemnification shall not apply and Buyer shall indemnify Exar and hold it harmless from all liability or
expense (including costs of suit and attorney's fees) if the infringement arises from, or is based upon Exar's
DX Software Development Kit User Guide, USR-0039-A04 Page 2
Exar Confidential

compliance with particular requirements of Buyer or Buyer's customer that differ from Exar's standard
specifications (Custom Product) for the Product, or modifications or alterations of the Product, or a
combination of the Product with other items not furnished or manufactured by Exar.
Buyer agrees that Exar shall not be liable for any collateral, incidental or consequential damages arising out of
patent infringement.
The foregoing states the entire liability of Exar for patent infringement.

Motorola

The use of this product in stateful compression protocols (for example, PPP or multi-history applications) with
certain configurations may require a license from Motorola. In such cases, a license agreement for the right to
use Motorola patents (US05,245,614, US05,130,993) may be obtained directly from Motorola.

Patents

May include one or more of the following United States patents: 4,930,142; 4,996,690; 4,701,745;
5,003,307; 5,016,009; 5,126,739; 5,146,221; 5,414,425; 5,414,850; 5,463,390; 5,506,580; 5,532,694;
6,320,846; 6,816,459; 6,651,099; 6,665,725; 6,771,646; 6,789,116; 6,954,789; 6,839,751; 7,299,282;
7,260,558. Other patents pending.

Trademarks

Hi/fn®, MeterFlow®, MeterWorks®, and LZS®, are registered trademarks of Exar Corporation. HifnTM, Hifn
Technology, FlowThroughTM, BitWackr, and the Hifn logo are trademarks of Hi/fn, Inc. All other trademarks
and trade names are the property of their respective holders.
IBM, IBM Logo, and IBM PowerPC are trademarks of International Business Machines Corporation in the
United States, or other countries.
Microsoft, Windows, Windows XP, Windows Vista, Windows Server 2003, Windows Server 2008 and the
Windows logo are trademarks of Microsoft Corporation in the United States, and/or other countries.

Exporting

This product may only be exported from the United States in accordance with applicable Export Administration
Regulations. Diversion contrary to United States laws is prohibited.

Exar Confidential

If you have signed a Exar Confidential Disclosure Agreement that includes this document as part of its subject
matter, please use this document in accordance with the terms of the agreement. If not, please destroy the
document.
DX Software Development Kit User Guide, USR-0039-A04 Page 3
Exar Confidential

Table of Contents

List of Figures . 9

List of Tables . 10

Preface . 11

Abbreviations . 14

1 Introduction . 16
1.1 Software Architecture. .17

1.2 Software Modules .18

1.2.1 Service Assistant Infrastructure (SAI) . 18

1.2.2 API Layer. 18

1.2.3 Exar Service Framework (ESF) . 18

1.2.4 Device Specific Driver (DSD) . 18

1.2.5 Software Library . 19

1.3 Applications .19

2 Features . 20
2.1 Symmetric Key Algorithms .20

2.1.1 Compression/Decompression Algorithms 20

2.1.2 Encryption/Decryption Algorithms. 20

2.1.3 Authentication Algorithms . 20

2.2 Public Key (PK) Algorithms .21

2.3 Random Number Generator (RNG). .22

3 Session Structure. 23
3.1 Terminology .23
DX Software Development Kit User Guide, USR-0039-A04 Page 4
Exar Confidential

3.2 Raw Acceleration Sessions .23

3.2.1 Raw Acceleration Session Model . 24

3.2.2 Stateful Sessions . 25

4 System Considerations . 26
4.1 Application Considerations .26

4.1.1 Synchronous/Asynchronous Mode. 26

4.1.2 Kernel/User Mode . 26

4.1.3 Single/Multi-Threaded Applications . 26

4.1.4 Interrupt Modes . 26

4.2 Memory Considerations .27

4.2.1 Scatter/Gather Memory Scheme. 27

4.2.2 Driver Memory Allocation. 28

4.3 API Buffer Requirements. .28

4.3.1 Alignment Requirements . 29

4.3.2 Expansion Requirements . 29

4.4 Performance Considerations .29

5 Driver Module . 31
5.1 Initialization Sequence .31

5.2 Driver Configuration File .32

5.2.1 Host Initialization Settings . 32

5.2.2 Command Structure Settings . 36

5.2.3 Log file Settings . 37

5.2.4 Temperature Sensor Settings . 38

5.3 Driver Components .39

5.3.1 Service Assistant Infrastructure . 39

5.3.1.1 OS Abstraction Layer (OSAL) . 39

5.3.1.2 Log . 39

5.3.1.3 XML File Parser. 39

5.3.2 Exar Service Framework . 40

5.3.2.1 Session Manager Module . 40

5.3.2.2 Packet Processing Module . 40

5.3.2.3 Load Balancing Module . 40
DX Software Development Kit User Guide, USR-0039-A04 Page 5
Exar Confidential

5.3.2.4 Device Manager Module. 40

5.3.2.5 Results Retrieval Module . 40

5.3.2.6 Event Manager Module . 40

5.3.2.7 Key Manager Module . 40

5.3.2.8 User Space Transaction Manager Module 40

5.3.2.9 Public Key Manager Module . 41

5.3.2.10 Raw RNG Module . 41

5.3.3 Device Specific Driver Module. 41

5.3.3.1 Linux PCIe Driver Module. 41

5.3.3.2 Initialization and Configuration Module 41

5.3.3.3 Register Access Module . 41

5.3.3.4 Flash Access Module . 41

5.3.3.5 DMA Manager Module . 41

6 Operation . 42
6.1 Raw Acceleration API Processing Steps. .42

6.1.1 Initialize the SDK . 42

6.1.2 Retrieve the Hardware Information . 43

6.1.3 Create Keys . 43

6.1.3.1 Create Symmetric Keys . 43

6.1.3.2 Create Public Keys . 44

6.1.3.3 Create a Session. 44

6.1.3.4 Submit Data to the Session . 45

6.1.3.5 Submit Data for PK Operation . 46

6.1.3.6 Close the Session . 47

6.1.4 Destroy Keys . 47

6.1.4.1 Destroy Symmetric Keys . 47

6.1.4.2 Destroy Public Key . 47

6.1.5 Uninitialize the SDK . 48

6.1.6 Raw Acceleration Session Data Transform Flow 48

7 Application Programs . 51
7.1 demo Application .51

7.1.1 Initiators . 51

7.1.2 CPU Load Calculator . 51

7.1.3 Thread Pool . 52
DX Software Development Kit User Guide, USR-0039-A04 Page 6
Exar Confidential

7.1.4 RNG . 52

7.1.5 DRBG . 52

7.1.6 PK Performance . 52

7.1.7 Packet Processor Performance . 53

7.1.8 demo Configuration File. 55

7.1.8.1 Test Configuration Settings . 55

7.1.8.2 Global Configuration Settings . 56

7.1.8.3 Raw Acceleration Configuration Settings 57

7.1.8.4 Public Key Configuration Settings . 60

7.1.8.5 RNG Configuration Settings . 61

7.1.8.6 DRBG Configuration Settings . 61

7.2 sdemo Application .63

7.2.1 sdemo Configuration Files . 63

7.2.1.1 File Settings . 63

7.2.1.2 Transform Settings . 63

7.2.2 sdemo Key File . 67

7.2.3 sdemo IVAAD File . 67

7.2.4 sdemo DRBG File . 67

7.3 example Application .69

7.3.1 Raw Session example Application . 69

7.3.1.1 Synchronous Mode . 69

7.3.1.2 Asynchronous Mode . 69

7.3.1.3 Synchronous FPGA Mode . 70

7.3.1.4 Asynchronous FPGA Mode . 71

7.3.2 PK example Application . 71

7.4 Debugging Tools .72

7.4.1 Monitor Tool. 72

7.4.2 Status Tool . 72

7.4.3 Diagnostic Tool. 72

8 Error Handling . 74
8.1 Definition of Error Status Codes. .74

8.1.1 Error Category . 79

8.1.2 Error Flags . 79

8.2 Failover .86
DX Software Development Kit User Guide, USR-0039-A04 Page 7
Exar Confidential

8.3 Single Command Error Handling .86

8.4 Hardware Timeout Error Handling .87

8.5 Overheated Condition Error Handling .88

8.6 PCIe Error Handling .89

8.6.1 Register Access Error Detection . 89

8.6.2 Link Speed and Width Degradation . 90

8.7 Data Corruption Error Handling .90

Appendix A: Usage and Standards Compliance of the Random Number
Generator . 91

A.1 Overview .91

A.2 Hardware Implementation .91

A.3 Software Implementation .93

A.3.1 Retrieve a Nondeterministic RNG Value from an Exar Device 93

A.3.2 RNG Test . 94

A.3.3 Monitoring the RNG Statistics . 95

A.4 Standards Requirements and Compliance .96

A.4.1 FIPS Requirements . 96

A.4.2 NIST Requirements . 96

A.4.3 NIST Compliance . 97

A.5 References .97

Appendix B: Exported Software Algorithms 98

B.1 eLZS .98

B.1.1 eLZS_Compress() . 99

B.1.2 eLZS_Compress_Description() . 103

B.1.3 eLZS_Decompress() . 104

B.2 DRE_swHashSha256() . 106

I Document Revision History . 109
DX Software Development Kit User Guide, USR-0039-A04 Page 8
Exar Confidential

DX Software Development Kit User Guide, USR-0039-A04 Page 9
Exar Confidential

List of Figures
Figure 1-1. High Level DX SDK System Model .16

Figure 1-2. Detailed Software Architecture. .17

Figure 3-1. Visual Representation of a Raw Acceleration Session 24

Figure 3-2. Raw Acceleration Session Model .25

Figure 4-1. Scatter/Gather Illustration. .27

Figure 6-1. Raw Encode Session Data Operation Flow .49

Figure 6-2. Raw Decode Session Data Operation Flow .50

Figure 7-1. demo Application Flow Diagram .51

Figure 7-2. PK Performance Flow Diagram .53

Figure 7-3. Packet Processor Performance Flow Diagram .54

Figure 7-4. Operations in Synchronous and Asynchronous Packet Processor Thread55

Figure 8-1. Single Command Failure Error Processing .87

Figure 8-2. Hardware Timeout Error Processing .88

Figure 8-3. Hardware Overheated Error Processing .89

Figure A-1. RNG High Level Block Diagram .92

Figure A-2. Flow to Retrieve RNG Number from an Exar Device 94

DX Software Development Kit User Guide, USR-0039-A04 Page 10
Exar Confidential

List of Tables
Table 8-1. Error Status Fields .75

Table 8-2. Error Code Field Description .77

Table 8-3. Combined Error Status and Flag Conditions .80

Table B-1. eLZS Compression Flag Definitions .99

Table B-2. Calgary Corpus Performance Test Results. 100

Table B-3. Canterbury Corpus Performance Test Results . 102

Table B-4. eLZS Decompression Flag Definitions. 104

Table B-5. swHashSha256 Flag Definitions. 106

Preface

About This Document
Welcome to the DX Software Development Kit (SDK) User Guide. This document describes
the operation and features of the DX SDK version 2.1.0L release.

The DX SDK operates with the following Exar devices or cards and their specific drivers:

• XR9240 coprocessor

• DX2040 card

Please note that in the context of this document, references to the 9240 device and the DX
card are interchangeable. Note that the SDK software refers to the XR9240 device as
“92xx” to accommodate future variations of the device.

Audience
This document is intended for:

• Project managers

• System engineers

• Hardware and software development engineers

• Marketing and product managers

Prerequisites
Before proceeding, you should generally understand:

• Compression algorithms LZS, Deflate, gzip, zlib

• Advanced Encryption Standard (AES), Triple Data Encryption Standard (3DES),
ARC4, and their modes of operation

• Cryptographic hash functions SHA, MAC, HMAC, GMAC, CMAC, XCBC, SSLv3

• The functionality of the XR9240 coprocessor and the DX2040 card

• Software and hardware of the target system

• C programming language
DX Software Development Kit User Guide, USR-0039-A04 Page 11
Exar Confidential

Document Organization
This document is organized as follows:

Chapter 1, “Introduction” provides an overview of the DX SDK.

Chapter 2, “Features” gives an overview of the operations supported by the DX SDK.

Chapter 3, “Session Structure” introduces the concept of a session as it applies to the DX
SDK.

Chapter 4, “System Considerations” gives important information on application settings,
memory allocation and performance tuning.

Chapter 5, “Driver Module” describes the driver initialization sequence and the driver
features.

Chapter 6, “Operation” provides a step-by-step example of the data processing on the Exar
DX card using the DX SDK and its API.

Chapter 7, “Application Programs” describes the application programs provided by Exar.

Chapter 8, “Error Handling” describes error handling and the error status codes that are
returned by the API functions.

“Appendix A: Usage and Standards Compliance of the Random Number Generator” provides
a more detailed description of the hardware RNG functionality and compliance.

“Appendix B: Exported Software Algorithms” documents the exported eLZS and hash
software functions.

Related Documents
The following documents can be used as a reference to this document.

DX SDK Release Notes, RLN-0009

DX SDK Getting Started Guide, USR-0038

Raw Acceleration API 2.1 Reference Guide, USR-0040

DX SDK 2.1.0L Raw Acceleration API Performance Application Note, APN-0006

XR9240 Compression and Security Coprocessor Data Sheet, DAT-0001

DX2040 Compression and Security Acceleration Card Data Sheet, DAT-0009

DX2040 Compression and Security Acceleration Card & XR9240 Compression and Secu-
rity Coprocessor Errata, ERR-0005
DX Software Development Kit User Guide, USR-0039-A04 Page 12
Exar Confidential

Customer Support
For technical support about this product, please contact your local Exar sales office,
representative, or distributor.

For general information about Exar and Exar products refer to: www.exar.com
DX Software Development Kit User Guide, USR-0039-A04 Page 13
Exar Confidential

www.exar.com

Abbreviations

Term Definition
3DES Triple DES

AAD Additional Authenticated Data

AER Advanced Error Reporting

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher Block Chaining encryption mode

CMAC Cipher-based Message Authentication Code

CTR Counter encryption mode

DES Data Encryption Standard

DIF Data Integrity Field

DSA Digital Signature Algorithm

DSD Device Specific Driver

ECB Electronic Codebook encryption mode

ECDH Elliptic curve Diffie Hellman

ECDSA Elliptic Curve DSA

ESF Exar Service Framework

eLZS Enhanced Lempel-Ziv-Stac Compression

GCM Galois Counter Mode

GMAC Galois Message Authentication Code

HIV Hash Initialization Vector

HMAC Hash Message Authentication Code

IOMMU Input/Output Memory Management Unit

IV Initial Vector

LZS Lempel-Ziv-Stac Compression

MD5 Message Digest 5

OSAL Operating System Abstraction Layer

PK Public Key

PP Packet Processor

RNG Random Number Generator

SAI Service Assistant Infrastructure

SDK Software Development Kit

SHA Secure Hash Algorithm
DX Software Development Kit User Guide, USR-0039-A04 Page 14
Exar Confidential

SSLv3 Secure Sockets Layer Version 3

XCBC eXtended Cipher Block Chaining

XTS XEX-based Tweaked CodeBook mode (TCB) with CipherText
Stealing (CTS), or XEX-TCB-CTS

Term Definition
DX Software Development Kit User Guide, USR-0039-A04 Page 15
Exar Confidential

1 Introduction
Figure 1-1 shows a high level system model of how the Exar DX SDK interfaces to the user
application and the Exar device(s).

The DX SDK currently supports the following Linux distributions:

• Red Hat Enterprise Linux 6.0 (Kernel 2.6.32-71.el6 for x86 64-bit)

• Red Hat Enterprise Linux 6.2 (Kernel 2.6.32-220.el6 for x86 64-bit)

• Red Hat Enterprise Linux 6.3 (Kernel 2.6.32-279.el6 for x86 64bit)

• Red Hat Enterprise Linux 6.4 (Kernel 2.6.32-358.el6 for x86 64-bit)

• CentOs release 6.1 (Kernel 2.6.32-131.0.15.el6 for x86 64bit)

• CentOs release 6.2 (Kernel 2.6.32-220.el6 for x86 64bit)

• CentOs release 6.3 (Kernel 2.6.32-279.el6 for x86 64bit)

• CentOS release 6.4 (Kernel 2.6.32-358.el6 for x86_64)

• SUSE Linux Enterprise Server 10 SP3 (Kernel 2.6.16.60-0.54.5-smp for x86 64-bit)

• SUSE Linux Enterprise Server 11 SP1 (Kernel 2.6.32.36-0.5-default for x86 64-bit)

• SUSE Linux Enterprise Server 11 SP2 (Kernel version 3.0.10 for x86 64-bit)

Figure 1-1. High Level DX SDK System Model
DX Software Development Kit User Guide, USR-0039-A04 Page 16
Exar Confidential

• Fedora 19 (Kernel version 3.9.4 for x86 64-bit)

The supported hardware platforms are:

• x86_64

Future releases of the DX SDK are expected to support Windows and FreeBSD operating
systems.

1.1 Software Architecture
Figure 1-2 illustrates the detailed architecture of the DX SDK.

Figure 1-2. Detailed Software Architecture
DX Software Development Kit User Guide, USR-0039-A04 Page 17
Exar Confidential

1.2 Software Modules
This section briefly describes the software modules that comprise the DX SDK in more
detail.

1.2.1 Service Assistant Infrastructure (SAI)
The Service Assistant Infrastructure (SAI) provides fundamental services for the other
modules. The SAI is composed of the OS Abstraction Layer (OSAL), log and file parser
components.

1.2.2 API Layer
Exar’s DX SDK provides the Raw Acceleration (Raw) API to interface to the user application.
The Raw Acceleration API leverages all functionality of Exar XR9240 device, including
compression, encryption, authentication, RNG and PK operations. Please refer to the Raw
Acceleration API Reference Guide, USR-0040, for detailed syntax and usage.

1.2.3 Exar Service Framework (ESF)
Exar Service Framework (ESF) provides the algorithm acceleration for the API Layer. All
chipset-independent code is located in the Exar Service Framework, while all chipset-
dependent code is located in the Device Specific Driver. The Exar Service Framework (ESF)
module manages all sessions, keys and devices that were registered with the Device
Specific Driver, thus enabling the hardware acceleration and software library operations.

The ESF retrieves operations from the API layer, translates those operations into hardware
commands, submits the commands to the hardware, retrieves the completed commands,
and returns the completed operations to the API layer. The ESF also manages the load
balancing, session context and key pool.

The ESF works with the Software Library to provide software support for various operations,
such as compression, authentication, encryption, and PK operations if the hardware is not
available for data operations.

1.2.4 Device Specific Driver (DSD)
The Device Specific Driver (DSD) is a chipset-dependent module. The Device Specific Driver
provides a unified hardware interface to the Exar Service Framework (ESF). The DSD
converts each device’s specific structure format to a uniform structure for the ESF.

Currently, the DX SDK supports a DSD for the XR9240 coprocessors, and a DSD for the
software library, and a DSD for the legacy 820x processors. A single instance of a DSD will
manage all devices of that class installed in the system. In other words, one instantiation of
the XR9240 DSD module will manage all XR9240 coprocessors installed on all DX cards in
the system.
DX Software Development Kit User Guide, USR-0039-A04 Page 18
Exar Confidential

1.2.5 Software Library
The Software library executes the operations, such as compression, authentication,
encryption and public key operations in software. The Software library is implemented as a
Device Specific Driver in order to simulate the hardware if an XR9240 device errored or is
recovering from an error, or if there are no operable Exar devices in the system.

1.3 Applications
The DX SDK includes the following applications to demonstrate the capabilities of the
XR9240 coprocessor.

demo

The demo application can be used to demonstrate the functionality of the Exar XR9240
device and its API-based system performance.

example

The example application can be used as a coding reference for software developers.

sdemo

The sdemo application is a simplified version of the demo application that can be used
to quickly verify the encode and decode operations.

dx_monitor, dx_status, and dx_diag

The dx_monitor, dx_diag and dx_status applications are debugging tools that can be
used to verify the DX card’s or XR9240 coprocessor’s status and performance.
DX Software Development Kit User Guide, USR-0039-A04 Page 19
Exar Confidential

2 Features
This section describes the features supported by the XR9240 DX SDK.

2.1 Symmetric Key Algorithms

2.1.1 Compression/Decompression Algorithms
The following compression and decompression operations are supported:

• Stateless LZS

• Stateless eLZS with support for anti-expansion

• Stateless and stateful gzip (RFC1952)

• Stateless and stateful Deflate (RFC1951)

• Stateless and stateful zlib (RFC1950)

2.1.2 Encryption/Decryption Algorithms
The XR9240 DX SDK supports the cipher algorithms listed below:

• Advanced Encryption Standard

• AES-ECB-128, AES-ECB-192, AES-ECB-256

• AES-CBC-128, AES-CBC-192, AES-CBC-256

• AES-CTR-128, AES-CTR-192, AES-CTR-256

• AES-GCM-128, AES-GCM-192, AES-GCM-256

• AES-XTS-256, AES-XTS-512

• 3DES-CBC

• DES (supported via 3DES API with K1=K2=K3)

• ARC4

Stateful encryption for CBC, CTR, GCM mode transforms are supported by storing the next
IV in the Host-based session state. The DX SDK also supports an IV replacement feature.
The IV replacement feature frees the application from maintaining the IV by enabling the
XR9240 device to generate a random, unpredictable IV. Refer to the Raw Acceleration
Reference Guide, USR-0040, for detailed information

2.1.3 Authentication Algorithms
The authentication algorithms supported are:

• SHA1, SHA256, SHA224, SHA384, SHA512
DX Software Development Kit User Guide, USR-0039-A04 Page 20
Exar Confidential

• MD5

• HMAC-SHA1, HMAC-SHA256, HMAC-SHA224, HMAC-SHA384, HMAC-SHA512, HMAC-
MD5

• SSLMAC-SHA1, SSLMAC-SHA256

• AES-GMAC-128, AES-GMAC-192, AES-GMAC-256

• AES-XCBC-128, AES-XCBC-192, AES-XCBC-256

2.2 Public Key (PK) Algorithms
The Public Key algorithms supported are:

• Diffie-Hellman

• DH shared secret generation

• Supports key sizes 1024 through 4096 bits

• Rivest-Shamir-Adleman

• RSA encryption and decryption

• RSA sign and verify

• Supports key sizes 1024 through 4096 bits

• Supports PKCS #1 v2.1: RSA Cryptography Standard

• Digital Signature Algorithm

• DSA sign and verify

• Supports FIPS186-3

• Supports L and N key length pairs of (1024, 160), (2048, 160), (2048, 224),
(2048, 256), (3072, 256), and (3072, 384)

• Elliptic curve Diffie Hellman (ECDH)

• ECDH public key, shared key generation

• Supports all EC curves with the form
E/Zp: y2 = x3 - 3x + b

However, the hardware is optimized for FIPS 256, 384, and 521 bit curves.

• Elliptic Curve DSA (ECDSA)

• ECDSA sign and verify

• Supports all FIPS curves

However, the hardware is optimized for FIPS 256, 384, and 521 bit curves

• EC Point Verify verifies whether a point is on a specified curve

• EC Point Multiply used to multiply over a specified curve

• Miller-Rabin Primality Test used to determine whether a large number is prime
DX Software Development Kit User Guide, USR-0039-A04 Page 21
Exar Confidential

2.3 Random Number Generator (RNG)
The XR9240 contains a raw hardware random number generator. The Raw Acceleration API
provides methods to retrieve random numbers from the raw hardware RNG and pseudo-
random numbers using a Deterministic Random Bit Generator module.
DX Software Development Kit User Guide, USR-0039-A04 Page 22
Exar Confidential

3 Session Structure
This section describes the terminology and structure of a Raw Acceleration session.

A session is an information exchange between the application and the DX SDK. A session is
created to submit source data to the API and retrieve transformed data from the service
core, and to define the specifics of the data transform.

3.1 Terminology
Command A command consists of a source buffer which contains the input data, a

destination buffer which stores the output data, and an optional
authentication buffer which stores the hash result, as well as the required
command specific parameters such as the IV or AAD. Commands are
grouped together to form a session.

Session A session defines the operation or transform that will be applied to the
commands in the session. Each session is represented by a set of
configurable parameters that will apply to all commands in that session.

All Packet Processing commands must be associated with a session. A
session must be opened by the user before PP commands may be
submitted to the hardware. Public Key commands are not required to be
associated with a session.

Packet A packet is an internal SDK construct that combines the user supplied
session and command parameters into a usable structure for the SDK.

3.2 Raw Acceleration Sessions
As shown in Figure 3-1, Raw Acceleration sessions are self-contained. The algorithm
parameters are configured for each command of data submitted to that session. A Raw
Acceleration session may be configured to perform compression, padding, encryption, and/
or authentication, however all commands in a particular session must be the same
algorithm. The session information such as the algorithm type, algorithm mode, IV, will be
shared by all commands in that session.

A Raw session does NOT buffer the source data or destination result data. After the packet
has been processed, the packet information is no longer available to the SDK.
DX Software Development Kit User Guide, USR-0039-A04 Page 23
Exar Confidential

3.2.1 Raw Acceleration Session Model
A Raw Acceleration session is modeled after a command processing operation as illustrated
in Figure 3-2. The user calls a command submittal function to submit a command along
with the location of the source data and destination buffer to the session to perform a data
operation. When the operation completes, the transformed data is written to the destination
buffer and returned to the user. Commands may be submitted synchronously or
asynchronously to a Raw Acceleration session.

Figure 3-1. Visual Representation of a Raw Acceleration Session
DX Software Development Kit User Guide, USR-0039-A04 Page 24
Exar Confidential

3.2.2 Stateful Sessions
The Raw Acceleration API allows for stateful operations. A stateful operation is achieved by
setting the Boolean parameter stateful to TRUE in the compression, encryption, or
authentication session management descriptors when the session is opened. Stateful
sessions do not support a combination of transforms such as compression + encryption in
the same session. However, multiple engines of the same transform type may be enabled
for a single stateful session.

Both synchronous and asynchronous data operation structures contain a flag parameter
that must be set to identify the last block in a stateful session when submitting the last
command of a stateful session.

Stateful commands execute one after another because the result of current command will
be used by next command. Typically, stateful commands are submitted using the
synchronous API function call. If a stateful command is submitted using the asynchronous
API function call, the SDK will maintain an internal command list, and only submit a new
command to the hardware after the current command completes.

When in stateful mode, the SDK will automatically save the relevant session information
across commands with the session. For stateful deflate/zlib/gzip compression, the history is
saved across the commands. For stateful encryption operations, the initialization vector (IV)
is saved across the commands in a stateful session. For stateful hash operations, an
intermediate hash value (IHV) is saved across the commands. For example, in a stateful
encryption session (CBC mode), the IV is set once by the host when the session is opened.
This IV is applied to the very first command for that session, and subsequent commands
will use the last CBC block of the previous command for the IV.

For DX SDK versions 2.1.0L and later, if a single command in a synchronous mode stateful
session fails, the application may re-submit only the failed command if the failure is
considered recoverable, such as an overflow error or ring-full error.

Figure 3-2. Raw Acceleration Session Model
DX Software Development Kit User Guide, USR-0039-A04 Page 25
Exar Confidential

4 System Considerations
This chapter discusses system issues that should be considered before installing and using
the DX SDK and its applications.

This chapter uses terms and concepts defined in Chapter 3, “Session Structure”. Chapter 3
should be read prior to this chapter.

4.1 Application Considerations

4.1.1 Synchronous/Asynchronous Mode
For all symmetric key algorithm related operations, the Exar XR9240 SDK provides both
synchronous and asynchronous modes for data processing. In synchronous mode, the API
call will not return until the corresponding data processing operations have been completed
by the SDK. In asynchronous mode, the API call will return immediately after the data
processing operation is accepted by the SDK, and the user will be notified of data
processing completion via a callback function.

Section 4.4 describes the performance considerations for synchronous and asynchronous
modes.

Please refer to the Raw Acceleration API Reference Guide, USR-0040, for a detailed
description of the Raw Acceleration API synchronous and asynchronous modes.

4.1.2 Kernel/User Mode
The system environment will dictate whether the DX SDK will operate in user mode or
kernel mode. The DX SDK has been designed to link with applications running in either user
mode or kernel mode.

4.1.3 Single/Multi-Threaded Applications
The Raw Acceleration API supports single and multi-threaded applications. The decision to
use single or multi-threaded applications will be based primarily on the system architecture.
Multi-threaded applications will typically yield improved performance.

4.1.4 Interrupt Modes
The XR9240 device supports MSI-X, MSI and legacy interrupt modes. Versions 2.x.x of the
DX SDK and later automatically select the interrupt mode in the sequence:

MSI-X -> MSI -> Legacy

based on the interrupts modes supported by the hardware.
DX Software Development Kit User Guide, USR-0039-A04 Page 26
Exar Confidential

4.2 Memory Considerations

4.2.1 Scatter/Gather Memory Scheme
The XR9240 and DX SDK API support a scatter/gather capability for accessing data in
memory. As shown in Figure 4-1, data buffers consist of fragments that are scattered
throughout the Host memory area, where each fragment is a contiguous memory region.

The user submits buffers containing data to process (source buffers) and buffers to hold
processed data (destination buffers) via the SDK's various command submission API calls.
For user-mode applications, in the typical case where the user does not provide a physical
address via the pAddr member of the DRE_DataDesc structure, the SDK will automatically
determine the virtual to physical page mappings for each virtual memory buffer and pass
these pages on to the hardware as fragments to process.

Figure 4-1. Scatter/Gather Illustration
DX Software Development Kit User Guide, USR-0039-A04 Page 27
Exar Confidential

On a per-command basis, the XR9240 DMA controller stores the starting addresses of all
the source and destination memory fragments. During a data move operation, the DMA
controller pulls the starting address of the first fragment and when that segment of data
has completed, it automatically feeds the starting address of the next fragment. The
scatter/gather memory scheme does not require a large contiguous block of memory from
the operating system.

For both user and kernel mode applications, the total source or destination buffer size
(aggregate size of all source or destination fragments) per command must be less than 400
MB. Submitted commands whose buffer sizes exceed 400 MB may fail due to memory
restrictions.

The SDK API provides a set of data descriptors to describe how the data buffers are stored
in memory. Users set the beginning address and size of each memory fragment that will be
gathered by the hardware DMA controller. The data descriptors themselves are contiguous
in the hardware command structure.

Refer to the XR9240 Data Sheet, DAT-0001, for more details on the command structure
and data descriptors.

4.2.2 Driver Memory Allocation
The DX SDK enhances performance by using a pre-allocation mechanism. As a result, the
user must monitor the total DMA coherent memory available in the system during driver
load time, especially when using multiple XR9240 devices. The driver load may fail if there
is not enough DMA coherent memory in the system.

For DX SDK versions 2.1.0L and later, the required amount of memory may be calculated
using the formula:

REQUIRED_MEM_SIZE = Nd * Nr * Nn * Np * C

Where:

Nd = Number of XR9240 devices

Nr = Number of rings configured per device (default is 12 PP rings + 4
PK rings)

Nn = Number of Non-Uniform Memory Access (NUMA) nodes in the
system

Np = Size of the per-ring and per-NUMA-node command pool (1024 by
default)

C = A constant, set to 6 KB

4.3 API Buffer Requirements
There are three types of data buffers used in the Exar XR9240 SDK: source buffers,
destination buffers and hash buffers.

The array of source buffers is specified with the parameter src in the Raw Acceleration
functions DRE_rawSessSubmitSync(), and DRE_rawSessSubmitAsync().
DX Software Development Kit User Guide, USR-0039-A04 Page 28
Exar Confidential

The array of destination buffers is specified with the parameter dst in the Raw Acceleration
functions DRE_rawSessSubmitSync(), and DRE_rawSessSubmitAsync().

The hash buffer is specified with the parameter hash in the Raw Acceleration functions
DRE_rawSessSubmitSync(), and DRE_rawSessSubmitAsync(). The hash buffer size must be
set large enough to store hash result. For example, the hash buffer must be not smaller
than 64 bytes for the hash algorithm SHA512.

4.3.1 Alignment Requirements
The XR9240 devices have no alignment requirements.

4.3.2 Expansion Requirements
Some conditions may require that the source and destination buffer sizes be larger than
anticipated. LZS and eLZS compression may actually cause data expansion if the data is
highly random. For example, consider a 1M-byte source data buffer. After compression, the
destination data typically becomes smaller than 1Mbyte but may expand to more than 1
Mbyte. If using LZS compression, the maximum number of bytes that should be added to
the original source buffer size to accommodate worst case expansion can be evaluated by
the following expression:

Maximum additional bytes = 1 / 8 * (source buffer size) + 16

If using eLZS compression, the maximum number of bytes that should be added to the
original source buffer size to accommodate worst case expansion can be evaluated by the
following expression:

Maximum additional bytes = 4 * (source buffer size) / 2048 + 4

Enabling CRC may also require special buffer size considerations, depending on the
algorithm and API being used. When CRC is enabled for a particular encode command, the
Exar device will compute and append a four byte CRC to the source data stream.
Applications using a block cipher mode of encryption such as AES-CBC must be aware that
the data to be fed to the encryption engine must be multiples of the 16 byte AES block size
and adjust their buffer sizes appropriately. For example, an application that performs AES-
CBC encryption on 4K buffers but does not enable CRC is able to feed in the 4K buffer
without modification. Later, when CRC is enabled and the same 4K is passed to the Exar
device, an error will be returned because the new plaintext size is now 4K+4 bytes. The
source data must therefore be padded with 12 bytes to achieve the proper AES block size
granularity. Applications that use the Raw Acceleration API can simply enable and configure
the Exar device's pad engine to achieve the proper padding.

4.4 Performance Considerations
For optimum performance, it is crucial to always keep the command ring(s) fully loaded
with commands. In a system where synchronous calls are made to the DX SDK, using
multiple threads will achieve the best command processing throughput. In a system where
asynchronous calls are made to the DX SDK, then using one or more threads with multiple
calls will achieve the best command processing throughput.
DX Software Development Kit User Guide, USR-0039-A04 Page 29
Exar Confidential

In general, due to command processing overheads and user/kernel context switching, small
packet performance is better in kernel mode than it is in user mode.

The driver configuration file parameter settings will affect the system performance. Please
refer to Section 5.2 for more information.
DX Software Development Kit User Guide, USR-0039-A04 Page 30
Exar Confidential

5 Driver Module
The Driver module includes the Service Assistant Infrastructure (SAI), Exar Service
Framework (ESF), and Device Specific Drivers (DSDs). The Driver module initializes the
Exar XR9240 devices and provides services to the applications.

After reading this document, refer to the DX SDK Getting Started Guide, USR-0038, for
instructions on how to compile and install the Driver module.

5.1 Initialization Sequence
The driver performs the following sequence to initialize the Exar device.

1. Initialize the SAI layer.

2. Parse the XML driver configuration file.

3. Initialize the Exar Service Framework Module.

4. Probe for Exar devices. If found, the driver will then perform the remaining steps
for each device found in the system. If no devices are found, and the user has
enabled failover (“failover=1”) in the driver, all data operations will be sent to the
software library for processing. If no Exar devices are found and the user has not
configured the driver to use software processing, the driver will still load but data
operations will fail.

5. Map the Exar device’s register memory space. Each probed Exar device and DX
card will be registered with the ESF device manager module.

6. Reset all Exar devices.

7. Ignore the first sixteen 32-bit words of the RNG, and then start the RNG
continuous test.

8. Allocate memory for the command rings and result rings. The number of the rings
and the sizes of the rings are defined by the parameters in the driver configuration
file.

9. Configure the hardware DMA rings.

10. Load the public key firmware into the hardware if public key operations are enabled
(pk_enable = 1 in the driver configuration file).

11. Configure the hardware for PK (if enabled) and RNG operations.

12. Register the interrupt service routine to the OS if necessary.

13. Run POST.

After the driver is successfully installed, the Exar devices are ready to process commands.
DX Software Development Kit User Guide, USR-0039-A04 Page 31
Exar Confidential

After uninstalling, the previously allocated physical memory will be released to the system.
The driver will unregister the interrupt service routine. The hardware cannot provide service
until the driver is installed again.

5.2 Driver Configuration File
A driver configuration file is used to configure the hardware related features. The
configuration file parameters should be reviewed and modified to reflect the user system
before loading the driver.

5.2.1 Host Initialization Settings
This section lists the driver configuration parameters that should be set by the host during
initialization. The settings for these parameters would typically not be changed while
running data operations.

Note

Changing any of the host initialization settings will require the driver to
be reloaded.

notification_mode

The parameter notification_mode sets the method that the Exar device should use to notify
the host driver of completed packet processing (PP) and Public Key (PK) commands and
how the host driver processes the completed commands. The notification_mode options
are:

0 = Interrupt mode using a kernel thread

1 = (obsolete)

2 = (obsolete)

3 = Interrupt mode using a tasklet (DPC)

For options 0 and 3, the XR9240 device will interrupt the host driver when a command
completes. For option 0, a kernel thread is spawned for each XR9240 ring to handle the
interrupt and then notifies the user when the command has completed. For option 3, a
tasklet is issued to handle the interrupt and then notify the user when the command has
completed.

If interrupt mode using a kernel thread is selected (option 0), the SDK uses the Linux New
API (also referred to as NAPI) interrupt mechanism to optimize the overall system
performance. In the NAPI method, polling is used to mitigate excessive interrupts during
heavy processing loads by locking a polling thread to a single CPU.

The default value for notification_mode is interrupt mode using a tasklet (option 3).

failover

The parameter failover determines the SDK behavior in the unlikely event of all Exar
devices or DX cards failing. The two options are: enable failover and disable failover.
DX Software Development Kit User Guide, USR-0039-A04 Page 32
Exar Confidential

If failover is enabled and all hardware devices have failed, further submitted commands will
be processed by the software library, albeit at reduced performance. The return status code
(bit 24) will be set if the software library is engaged. See Section 8.2, “Failover” for more
information.

The default value for failover is enabled.

real_time_verification

The parameter real_time_verification enables or disables real time verification of the
compression, authentication and encryption engines. The two options are: enable real time
verification and disable real time verification.

The default value for real_time_verification is real time verification is enabled.

load_balance_algorithm

The parameter load_balance_algorithm sets the command ring load balancing algorithm
that the SDK will uses for all cards/devices. The options are: round-robin, queue depth, and
CPU ring-binding.

In the round-robin scheme, the SDK sequentially assigns the data operation commands to
all rings in the system. When the last ring in the sequence is reached, the SDK assigns the
next command to the first ring and so on. With this load-balancing scheme, no
consideration is given to the number of outstanding commands in each device's command
ring.

In the queue depth scheme, the SDK considers each ring's current command queue depth
before assigning the next command. For example, if a system has two rings and ring A's
queue has 10 commands to process, and ring B's queue has 20 commands to process, then
the SDK will assign the next command to ring A.

The round-robin load balancing algorithm will typically yield the best performance if all the
rings/devices in the system have the same processing capacity and each command's packet
size is approximately the same size. In contrast, the queue depth load balancing algorithm
will typically yield the best performance if the rings/devices in the system have different
processing capacities and/or the mix of commands to process consist of varying packet
sizes.

Note, however, that due to the extra decision making logic, the queue depth approach has
a larger per-packet overhead than round-robin. Exar's own internal testing has shown that
small packet (64-byte) performance is better with the round-robin algorithm than with the
queue depth algorithm.

In the CPU ring-binding scheme, the DX SDK automatically binds the CPUs to the rings. For
example, if a system has 16 CPU cores and a single XR9240 device that is configured with
16 rings, the DX SDK will bind 16 CPU cores to the 16 rings, one to one. Threads running
on CPU #0 will submit commands to ring #0, threads running on CPU #1 will submit
commands to ring #1, and so on. The CPU ring-binding scheme reaches maximum
performance when the packet size is smaller than 1024 bytes because it reduces
competition and lock between the CPU cores.
DX Software Development Kit User Guide, USR-0039-A04 Page 33
Exar Confidential

Ultimately, the operating environment and application specifics will determine the best
load-balancing algorithm to use, and customers are encouraged to experiment with all
settings during the performance tuning phase of device integration.

The default value for load_balance_algorithm is round-robin.

xts_dif_format

The parameter xts_dif_format specifies the XTS_DIF format. The two options are: T10/03-
310r0 DIF standard, and T10/08-044r1 SBC-3 DIF standard.

There is no performance impact for the xts_dif_format settings.

The default value for xts_dif_format is T10/03-310r0.

max_key_num

The parameter max_key_num sets the maximum number of symmetric and PK keys that
may be used by the SDK. The SDK maintains a separate key table with "max_key_num"
entries for the symmetric and PK keys.

The valid values for this parameter are any whole number between 7 and 32M. Note that
although the DX SDK supports up to 32M keys, some systems may not support this value
due to memory restrictions.

There is no performance impact for setting max_key_num, however a larger key table
requires additional host memory. The maximum size of the symmetric key structure that is
used for encryption and MAC operations is 128 bytes.

The default value for max_key_num is 4096.

max_session_num

The parameter max_session_num sets the maximum number of Raw sessions. The
minimum value for this parameter is 2 and the maximum value is 32M.

The SDK dynamically allocates the sessions as entries in a table. There is no performance
impact for setting max_session_num, however a larger table requires additional host
memory. The maximum size of a single Raw session structure is 1K bytes. Typically, the
size of a RAW session structure is less than 1K bytes. Sessions that specify stateful
compression or decompression may require additional memory for the history buffer.

The default value for max_session_num is 4096.

pp_statistics_enable

The parameter pp_statistics_enable indicates whether to enable or disable gathering packet
processing statistics. The two options are: enable statistics and disable statistics.

NOTE: Enabling this field will significantly degrade small packet performance on some
platforms.

For more information about statistics gathering, please refer to either the Raw Acceleration
API Reference Guide, USR-0040.
DX Software Development Kit User Guide, USR-0039-A04 Page 34
Exar Confidential

The default value for pp_statistics_enable is disable statistics gathering.

pp_malloc_mem_threshold

This legacy parameter is ignored for DX SDK versions 2.0.0L and later.

pk_enable

The parameter pk_enable controls the clock and power to the Public Key module. The two
options are: enable the PK module and disable the PK module.

Enabling the PK module increases power significantly. Applications that do not use the
Public Key module should disable this parameter to conserve power.

The default value for pk_enable is enabled.

pcie_error_recovery_enable

The parameter pcie_error_recovery_enable indicates whether the PCIe error handling
feature is enabled or disabled. The two options are: enable PCIe error handling and disable
PCIe error handling.

The default value for pcie_error_recovery_enable is enabled.

pcie_error_interval_threshold

The parameter pcie_error_interval_threshold sets the PCIe error handling interval. This
parameter is only valid when pcie_error_recovery_enable = 1.

The SDK will attempt to recover a single PCIe error within the time interval defined by this
parameter. If more than one uncorrectable PCIe error occurs within that interval, the DX
SDK will take that card offline. To force the DX SDK to attempt to recover every PCIe error,
set pcie_error_interval_threshold to zero.

The default value for pcie_error_interval_threshold is 8 hours.

rng_bit_rate

The parameter rng_bit_rate sets the number of clock cycles between bit samples in the
serial-to-parallel conversion whitening LFSR inside the XR9240 RNG engine. Refer to
Appendix A for detailed information about the RNG implementation.

The valid values for rng_bit_rate are:

0: 125 Mbps (continuous)
1: 62.5 Mbps
2: 41.7 Mbps
3: 31.25 Mbps
4: 25 Mbps
5: 20.8 Mbps
6: 17.9 Mbps
7: 15.63 Mbps
DX Software Development Kit User Guide, USR-0039-A04 Page 35
Exar Confidential

The default value for rng_bit_rate is 7 (15.63 Mbps). The default value is expected to be
suitable for most applications.

rng_sample_interval

The parameter rng_sample_interval sets the number of clock cycles between capturing the
32-bit output of the seed generator into the RNG buffer. Refer to Appendix A for detailed
information about the RNG implementation.

The valid values for rng_sample_interval are:

0: 32 * (rng_bit_rate+1)
1: 64 * (rng_bit_rate+1)
2: 128 * (rng_bit_rate+1)
3: 256 * (rng_bit_rate+1)

The default value for rng_sample_interval is 2. The default value is expected to be suitable
for most applications.

cpu_dma_zero_latency

The parameter cpu_dma_zero_latency controls the amount of CPU DMA latency. Enabling
this parameter will increase performance for systems where the CPU enters an idle C-state.

Enabling this parameter increases power consumption significantly. Applications that do not
experience reduced performance should disable this parameter to conserve power.

The default value for cpu_dma_zero_latency is disabled.

5.2.2 Command Structure Settings
cmds_per_ring

The parameter cmds_per_ring sets the maximum number of commands in a command ring.
The SDK supports multiple command rings, so this parameter sets the maximum number of
commands for all enabled command rings (the value will be applied to all rings).

For optimum command processing throughput, the command ring should never be empty.
Selecting too small of a value for cmds_per_ring may limit the performance because the
software command submittal thread cannot sustain the hardware. On the other hand,
selecting too large a value for cmds_per_ring may unnecessarily consume too much host
memory (refer to Section 4.2.1).

The default setting for cmds_per_ring should be satisfactory for most applications. If
DRE_C_CMD_NODE_IN_USE errors occur too frequently, it is an indication that the value
for cmds_per_ring is set too small.

The valid values for cmds_per_ring are:

32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536

The default value for cmds_per_ring is 4096.
DX Software Development Kit User Guide, USR-0039-A04 Page 36
Exar Confidential

data_desc_per_cmd

The parameter data_desc_per_cmd sets the maximum number of source and destination
descriptors for each command structure pre-allocated by the SDK. The valid values for this
parameter are any even whole number larger than 32. The value must be even because the
hardware requires an equal number of source and destination pairs per command.

The DX SDK and driver will pre-allocate memory for source and destination descriptors up
to the size defined by data_desc_per_cmd. For commands that require additional source or
destination descriptors, the DX SDK will dynamically allocate the required memory.

The setting for data_desc_per_cmd and the dynamic memory allocation for larger
commands will not affect performance. The default value in the driver configuration file will
be suitable for most applications.

Larger values for data_desc_per_cmd will allow for more fragments in a scatter-gather
scheme, and/or large user mode buffers that will likely be subject to more discontiguous
physical page mappings.

The default value for data_desc_per_cmd is 64.

5.2.3 Log file Settings
log_file_name

The parameter log_file_name sets the path and file name for the log file. The value must be
a string type. For example, “/root/home/abc/d.log”, uses the absolute file path and sets the
log filename to d.log. If this string is empty (“log_file_name =”), the log data is not saved
to the log file.

The default value for log_file_name is dresys.log. The default path is relative to the current
working directory when the driver was loaded. If the driver was loaded using udev, the
current working directory will be the root path “/”, and as a result, the path and file name
will be “/dresys.log”.

log_print_level

The parameter log_print_level sets the print level for the log output.

There are five defined log output levels:

0: DRE_LOG_EMG (least verbose)

1: DRE_LOG_ERR

2: DRE_LOG_WARNING

3: DRE_LOG_INFO

4: DRE_LOG_TRACE (most verbose)

The log levels are inclusive of the lower levels. For example, a log_print_level value of
DRE_LOG_INFO, will direct all DRE_LOG_EMG, DRE_LOG_ERR, DRE_LOG_WARNING and
DRE_ERR_INFO messages to be saved to the log file.
DX Software Development Kit User Guide, USR-0039-A04 Page 37
Exar Confidential

The default value for log_print_level is DRE_LOG_ERR.

log_redirection

The parameter log_redirection indicates where the log information will print. The two
options are: print only to the log file, and print to the log file and to the display console.

The default value for log_redirection is to print to a log file and to the console.

log_file_size

The parameter log_file_size sets the file size for the log file. Entries in the log are written
using a circular buffer technique, with the newest log entries wrapping around and
overwriting the oldest entries.

Note that the actual log file size may be larger than the value configured for log_file_size
because the DX SDK adds an additional 10KB to the configured log file size for expansion.

The default value for log_file_size is zero which sets the log size to unlimited.

5.2.4 Temperature Sensor Settings
temp_over_enable

The parameter temp_over_enable enables or disables over-temperature protection in the
XR9240 device(s). The two options are: enable over-temperature protection and disable
over-temperature protection.

This parameter is used in conjunction with the parameters normal_temp, and
over_heat_temp.

The default value for temp_over_enable is enable over-temperature protection.

normal_temp

The parameter normal_temp sets the maximum temperature at which the XR9240 can
operate normally. If the XR9240 temperature exceeds the normal temperature and then
returns to a temperature less than or equal to the value for normal_temp, the XR9240 will
continue to operate.

This parameter is only valid if the parameter temp_over_enable is set to enable. The valid
values for normal_temp are 0 - 125 °C.

The default value for normal_temp is 105 °C.

over_heat_temp

The parameter over_heat_temp sets the temperature that if exceeded will cause the
XR9240 device to not operate correctly. If the XR9240 exceeds this temperature, the
XR9240 will enter into an overheated state and will no longer process commands.
DX Software Development Kit User Guide, USR-0039-A04 Page 38
Exar Confidential

This parameter is only valid if the parameter temp_over_enable is set to enable. The valid
values for over_heat_temp are 0 - 125 °C. The value for over_heat_temp must be greater
than the value for normal_temp.

The default value for normal_temp is 115 °C. The default value will be applicable for most
system environments.

5.3 Driver Components
This section describes the Driver components in more detail.

5.3.1 Service Assistant Infrastructure

5.3.1.1 OS Abstraction Layer (OSAL)
As its name implies, the OS Abstraction Layer (OSAL) defines a generic linkage between the
SDK and various OS-specific functionality. The SDK provides an out-of-the-box OSAL
implementation specific to the supported Linux distributions. Support for other operating
systems requires porting of the OSAL routines. The OSAL APIs can be called by other sub-
modules within the SDK.

Examples of the items that require porting to various OS platforms are:

• Mutual Exclusion Semaphore Wrapper

• Virtual/Physical Address Translation APIs

• Delaying Execution APIs

• Memory Operation APIs

• File Operation APIs

• User Mode Thread Operation APIs

• Timer Function Wrapper

• IO access Wrapper

• WorkItem queue Wrapper

5.3.1.2 Log
The Log module allows other modules to log information to a specified log file. The log file
is created when loading the driver. The user can edit the driver configuration file to
configure the log file’s reporting level or the console’s print level.

5.3.1.3 XML File Parser
This module provides a mechanism to parse the driver configuration file.
DX Software Development Kit User Guide, USR-0039-A04 Page 39
Exar Confidential

5.3.2 Exar Service Framework
The Exar Service Framework (ESF) contains functional modules that assist the API Layer
and internal modules.

5.3.2.1 Session Manager Module
The Session Manager is responsible for creating, deleting, maintaining, and setting up the
various types of sessions within the DX SDK.

5.3.2.2 Packet Processing Module
The Packet Processing Module performs the pre-processing tasks before a packet is
submitted to the hardware and the post-processing tasks after a packet is returned by the
hardware.

5.3.2.3 Load Balancing Module
The Load Balancing module executes the load balancing algorithm defined in the driver
configuration file.

5.3.2.4 Device Manager Module
The Device Manager module registers and stores all Exar devices probed by the DSD.

5.3.2.5 Results Retrieval Module
The Results Retrieval module reads the results from commands completed in hardware
from the DSD.

5.3.2.6 Event Manager Module
The Event Manager module handles all events reported by the DSD, such as PCIe related
errors, temperature over-heating, etc.

5.3.2.7 Key Manager Module
The Key Manager module provides centralized key storage and index management for both
symmetric keys and public keys. The maximum number of keys that may be stored in the
Key Manager is configured in the driver configuration file.

5.3.2.8 User Space Transaction Manager Module
This module provides user space service to the user space API layer.
DX Software Development Kit User Guide, USR-0039-A04 Page 40
Exar Confidential

5.3.2.9 Public Key Manager Module
The PK Manager works with the DSD module to provide PK algorithm acceleration to the
API layer.

5.3.2.10 Raw RNG Module
The Raw RNG module works with the DSD module to provide RNG acceleration to the API
layer.

5.3.3 Device Specific Driver Module
The Device Specific Driver (DSD) probes and initializes all Exar devices and registers them
with the Exar Service Framework module. The DSD provides a uniform interface to the ESF
among the various Exar devices.

5.3.3.1 Linux PCIe Driver Module
The Linux PCIe Driver module probes all generic PCIe devices and provides a driver
framework for each PCIe device.

5.3.3.2 Initialization and Configuration Module
This module initializes all probed Exar devices and configures them according to the driver
configuration file.

5.3.3.3 Register Access Module
The Register Access module performs register accesses for the other modules within the
DSD.

5.3.3.4 Flash Access Module
The Flash Access module performs access to the Flash for the DSD modules.

5.3.3.5 DMA Manager Module
The DMA Manager module is responsible for managing the hardware DMA rings.
DX Software Development Kit User Guide, USR-0039-A04 Page 41
Exar Confidential

6 Operation
The DX SDK package extrapolates the low-level management and use of the XR9240 device
from the user application program. The DX SDK automatically and transparently identifies
the Exar hardware and its capabilities. Operations that can execute using Exar's fast
hardware compression, decompression, hash, encryption and decryption will do so. If the
device or card does not support that function in hardware, the operation will execute in
software.

User application software interfaces to the DX SDK through the Raw Acceleration API. For
detailed syntax and format of the Raw Acceleration API, please refer to the Exar Raw
Acceleration API Reference Guide, USR-0040.

This chapter describes the processing steps, transform data flow, and buffer requirements
for the Raw Acceleration API.

The driver configuration file should be reviewed and modified according to the user’s
system environment before any data is processed.

6.1 Raw Acceleration API Processing Steps
The basic processing steps to use the Raw Acceleration API are described below.

Step 1 Initialize the SDK
Step 2 Retrieve the hardware information
Step 3 Create symmetric or public Keys
Step 4 For symmetric key data operations, create a session
Step 5 For symmetric key data operations, submit data to the session; for PK key opera-

tions, submit data to the relevant PK keys for processing
Step 6 For symmetric key data operations, close the session
Step 7 Destroy symmetric or public keys
Step 8 Uninitialize the SDK

6.1.1 Initialize the SDK
The application should first initialize the resources used by the SDK. To do so, the
application should call the API function DRE_apiSysInit(). This function should be called only
once at the start of every application process. Once initialized, the resources must be
released at the exit of the application by calling the API function DRE_apiSysExit().

The pseudo code may look like:

status=DRE_apiSysInit();
if(DRE_IS_RESULT_ERR(status))
{
 //error
 … …
}

DX Software Development Kit User Guide, USR-0039-A04 Page 42
Exar Confidential

6.1.2 Retrieve the Hardware Information
After successfully initializing the SDK, the application should call the API function
DRE_cardInfoGet() to retrieve the following hardware information:

• Driver version

• Device version

• Card version

• Card model number

• Number of Exar devices in the system

• PCIe Vendor ID

• PCIe Device ID

• PCIe Revision ID

• PCIe Class Code

• Subsystem Device ID

• PCIe Subsystem Vendor ID

• PCIe Link Width

• PCIe bus ID

• Status of the card

• Serial number of the card

• Number of unconfirmed/confirmed hardware errors

The pseudo code may look like:

DRE_cardInfo cardInfo[DRE_MAX_CARD_NUM];
DRE_u32b numCards = DRE_MAX_CARD_NUM;

status = DRE_cardInfoGet(&numCards, cardInfo);
if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

6.1.3 Create Keys

6.1.3.1 Create Symmetric Keys
A symmetric key must be created for any Raw sessions that will use an algorithm that
requires an encryption or HMAC key.
DX Software Development Kit User Guide, USR-0039-A04 Page 43
Exar Confidential

To create a symmetric key, the application should call the API function
DRE_rawSymKeySet(). This function should be called whenever a new symmetric
encryption key is required. A key index will be returned to the application that should be
used for data operations.

The pseudo code may look like:

DRE_u64b keyId;
DRE_u08b keyString[16]=
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};

status=DRE_rawSymKeySet(keyString, sizeof(keyString),&keyId);
if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

6.1.3.2 Create Public Keys
All public key operations except MODMUL (modular multiply) and MODEXP (modular
exponentiation) require that the application create public keys.

To create a public key, the application should call the API function DRE_pkKeyCreateKey().
This function should be called whenever a new public key is required. A key index will be
returned to the application that should be used for the data operations.

The pseudo code may look like:

DRE_u64b keyId;
DRE_pkKey pkKey;

//set RSA public PK key
memset(&pkKey,0,sizeof(pkKey));
pkKey.type=DRE_PK_RSA_PUB;
pkKey.param.RsaPubParam.m.nLen= 1024/BITS_IN_WORDS;
pkKey.param.RsaPubParam.m.pData=RSA_PUB_KEY_1024_M;
pkKey.param.RsaPubParam.e.nLen = 1;
pkKey.param.RsaPubParam.e.pData = RSA_PUB_KEY_1024_E;

status= DRE_pkKeyCreateKey(&pkKey, &keyId);
if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

6.1.3.3 Create a Session
Before any packet of data can be processed, a session must be created.
DX Software Development Kit User Guide, USR-0039-A04 Page 44
Exar Confidential

To create a Raw session, the application should call the API function DRE_rawSessOpen().
A session handle will be returned to the user application if the call is successful. The user
application will use this returned session handle to process commands and eventually to
close the Raw session once the processing is complete.

The pseudo code may look like:

DRE_rawSessHandle handle;
DRE_rawSessCompParam comp;
DRE_rawSessPadParam pad;
DRE_rawSessEncParam enc;
DRE_rawSessHashParam hash

//set up the algorithm parameters
… …

status= DRE_rawSessOpen(&handle,
0,
DRE_TRUE,
0,
NULL,
&comp,
&pad,
&enc,
&hash);

if(DRE_IS_RESULT_ERR(status))
{

//error
……
}

During the Raw session creation, the user application may specify a callback function for
that session. If a Raw session is created with a callback function, (i.e. parameter cb of
DRE_rawSessOpen() is NOT NULL), the data submitted to that session must use the
asynchronous mode API. If a Raw session is created with a NULL callback function, the
application can only call the synchronous mode API for this session. For a detailed
discussion of synchronous and asynchronous modes, please refer to Section 4.1.1.

6.1.3.4 Submit Data to the Session
The user application may submit a packet of data to a successfully opened Raw session for
algorithm processing. The user application may submit the data in synchronous mode using
DRE_rawSessSubmitSync(), or in asynchronous mode using DRE_rawSessSubmitAsync().

In synchronous mode, DRE_rawSessSubmitSync() will return only after the SDK/hardware
has finished processing the packet of data. In asynchronous mode,
DRE_rawSessSubmitAsync() will return immediately after the packet of data has been
accepted by the SDK, and once the data has finished processing, the callback function
specified during the corresponding Raw session creation will be called to notify the user
application of the command completion.

The pseudo code may look like:

DRE_rawSyncOpData synOpData;
DRE_dataDesc src, dst;
DX Software Development Kit User Guide, USR-0039-A04 Page 45
Exar Confidential

//set up the opData
……
//set the src & dst data descritpors
… …

status=DRE_rawSessSubmitSync(handle,
&synOpData,
&src, 1
&dst, 1
NULL);

if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

The data submittal functions will return with the command execution status and if
applicable, any error codes. The user application should confirm the status of all returned
commands. Refer to “Error Handling” for more information.

6.1.3.5 Submit Data for PK Operation
PK commands are not required to be associated with a session and may be submitted
directly to the hardware. The Public Key data should be submitted using the function
DRE_pkExecCmd(). This function is only supported in asynchronous mode, so the user must
specify the callback function during submission. Through the first argument in
DRE_pkExecCmd(), the PK operation can be directed either to a specific card/device in the
system, or the SDK's internal load-balancing algorithm can be used via a special “virtual”
card/device identifier.

The pseudo code may look like:

Void pk_callback(DRE_u32b cardNum, void *callbackID, DRE_u32 status)
{
 if(DRE_IS_RESULT_ERR(status))
 {
 //error happens
 ……
 }else {
//success
……
 }
 return;
}

DRE_PKArgs pkArg;
//set up pkArg
……
status=DRE_pkExecCmd(0,

pk_callback,
&pkArg,
&pkArg);

if(DRE_IS_RESULT_ERR(status))
{

DX Software Development Kit User Guide, USR-0039-A04 Page 46
Exar Confidential

//error
……
}

The data submittal functions will return with the command execution status and if
applicable, any error codes. The user application should confirm the status of all returned
commands. Refer to “Error Handling” for more information.

6.1.3.6 Close the Session
After the user application completes the Raw session, it should be closed using the function
DRE_rawSessClose() to free the resources used by the session. The user should pass the
session handle to DRE_rawSessClose() that was returned by DRE_rawSessOpen().

The pseudo code may look like:

status=DRE_rawSessClose(handle);
if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

6.1.4 Destroy Keys

6.1.4.1 Destroy Symmetric Keys
The symmetric key created by DRE_rawSymKeySet() should be destroyed using the
function DRE_rawSymKeyDestroy() when the user no longer requires that key.

The pseudo code may look like:

status= DRE_rawSymKeyDestroy(keyId);
if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

6.1.4.2 Destroy Public Key
The public key created by DRE_pkKeyCreateKey() should be destroyed by the function
DRE_pkKeyDestroy() when the user no longer requires that key.

The pseudo code may look like:

status= DRE_pkKeyDestroy(keyId);
if(DRE_IS_RESULT_ERR(status))
{
//error
……
}

DX Software Development Kit User Guide, USR-0039-A04 Page 47
Exar Confidential

6.1.5 Uninitialize the SDK
Finally, the user application should release the resources which were allocated during the
SDK initialization by calling the function DRE_apiSysExit(). This function should be called
only once at the end of every application process.

The pseudo code may look like:

DRE_apiSysExit();

6.1.6 Raw Acceleration Session Data Transform Flow
In a Raw Acceleration session, the four data transforms, namely compression/
decompression, padding/de-padding, encryption/decryption, hash (MAC), may be chained.

For encode sessions, the order of data transformation is compression -> padding ->
encryption, as shown in Figure 6-1. The hash/MAC position is configurable and may be at
any position. If a pure hash (non-MAC) algorithm is required, the hash position must be at
the very beginning (see HASH_BEFORE_CMP (a) in Figure 6-1).
DX Software Development Kit User Guide, USR-0039-A04 Page 48
Exar Confidential

For decode sessions, the order of data transformation is decryption -> pad stripping ->
decompression. The MAC verification position is configurable and may be at any position.

Figure 6-1. Raw Encode Session Data Operation Flow
DX Software Development Kit User Guide, USR-0039-A04 Page 49
Exar Confidential

Figure 6-2. Raw Decode Session Data Operation Flow
DX Software Development Kit User Guide, USR-0039-A04 Page 50
Exar Confidential

7 Application Programs

7.1 demo Application
The demo application performs a simple performance benchmark of the DX SDK Raw
Acceleration API functions. Both kernel mode and user mode demo applications are
provided for Linux.

The demo application can be run from the command line using the parameters defined in
the demo configuration file. Configurable parameters include the number of threads to
spawn, the operation to execute, and the test mode to be used.

The architecture of the demo application program is shown in Figure 7-1 below.

7.1.1 Initiators
The user mode and kernel mode Initiators are responsible for:

1. Bringing up the user mode or Linux kernel mode application.

2. Parsing the demo configuration file.

3. Setting up the environment.

4. Running the performance main test functions.

7.1.2 CPU Load Calculator
The CPU load calculator is responsible for getting the CPU load statistics and calculating the
average CPU load.

Figure 7-1. demo Application Flow Diagram
DX Software Development Kit User Guide, USR-0039-A04 Page 51
Exar Confidential

7.1.3 Thread Pool
The thread pool is an internal module used by the Packet Processor performance test. This
pool provides the next available thread to the caller to optimize the session creation and
destruction overhead.

7.1.4 RNG
The RNG module is responsible for repeatedly reading raw random numbers and making
sure no values are the same.

7.1.5 DRBG
The Deterministic Random Bit Generator (DRBG) module is responsible for initializing the
DRBG instance(s), reading the DRBG data, and closing the DRBG instance(s).

7.1.6 PK Performance
The PK performance module calculates the performance of the following PK operations:

• DH: 1K bit, 2K bit, 4K bit

• RSA: 1K bit, 2K bit, 4K bit

• DSA: 1K bit, 2K bit, 3K bit

• ECDH: 192, 224, 256, 384, 521 bit curves

• ECDSA: 192, 224, 256, 384, 521 bit curves

The main flow of the PK perf module is:

1. Create all PK keys as needed.

2. Perform the flow shown in Figure 7-2 for PK operations.

3. Delete all PK keys.

4. Log the performance results into the log file.
DX Software Development Kit User Guide, USR-0039-A04 Page 52
Exar Confidential

7.1.7 Packet Processor Performance
The Packet Processor (PP) performance module calculates the performance and CPU load
for symmetric key algorithm operations.

The main flow of PP performance module is:

1. Create the symmetric keys needed for the PP performance test.

2. Initialize the thread pool.

3. Allocate the temporary buffers.

4. Run the encode/decode performance test of Raw Acceleration session based on
demo configuration file, as shown in Figure 7-3.

5. Free the temporary buffers allocated in step 3.

6. Destroy the symmetric keys created in step 1.

Figure 7-2. PK Performance Flow Diagram
DX Software Development Kit User Guide, USR-0039-A04 Page 53
Exar Confidential

For each thread in the thread pool, the operations performed in each task are illustrated in
Figure 7-4. Note: The operation flow is different for synchronous and asynchronous modes.

Figure 7-3. Packet Processor Performance Flow Diagram
DX Software Development Kit User Guide, USR-0039-A04 Page 54
Exar Confidential

7.1.8 demo Configuration File
A configuration file, demo.cfg.xml, is used to set the test parameters of the demo
application. The demo configuration file parameters should be set to appropriate values
before running the demo application.

7.1.8.1 Test Configuration Settings
This section lists the configuration parameters that control the demo test mode.

DX SDK versions 2.1.0L and later support the option of running two demo application
programs simultaneously. This feature is useful for testing parallel packet processing and
public key operations. To do so, set the configuration parameters for the first demo
program to enable test_raw_pp and disable test_raw_pk, and then set the second demo
program configuration parameters to disable test_raw_pp and enable test_raw_pk. The run
time, controlled by the parameter stop_sec, should be set to the same value for both demo
programs, e.g. 60 seconds. To run both PP and PK demo tests for the same comparable
time, the parameter stop_sec must take into consideration all parameters specified. Take

Figure 7-4. Operations in Synchronous and Asynchronous Packet Processor Thread
DX Software Development Kit User Guide, USR-0039-A04 Page 55
Exar Confidential

for example the default configuration file, demo.cfg.xml. Both DEFLATE compression and
decompression will run for 10 seconds each, for a total runtime of 20 seconds. If the PK
RSA test is also enabled, it will run RSA encryption/decryption/sign/verify for 40 seconds.
In order for the two tests to complete at the same time, stop_sec in the PP demo test
should be set to 40 seconds.

test_raw_pp

The parameter test_raw_pp sets the Raw Acceleration test mode. The two options are: test
Raw Acceleration packet processing session performance and do not test Raw Acceleration
packet processing session performance. The default value is enabled.

test_raw_pk

The parameter test_raw_pk sets the Raw Acceleration Public Key test mode. The two
options are: test Raw Acceleration public key operation performance and do not test Raw
Acceleration public key operation performance. The default value is disabled.

test_raw_rng

The parameter test_raw_rng sets the Raw Acceleration Random Number Generation test
mode. The two options are: test Raw Acceleration Random Number Generation and do not
test Raw Acceleration Random Number Generation. The default value is disabled.

test_raw_drbg

The parameter test_raw_drbg sets the Raw Acceleration API test mode for DRBG. The two
options are: test Raw Acceleration API DRBG and do not test Raw Acceleration API DRBG.
The default value is disabled.

7.1.8.2 Global Configuration Settings
This section lists the configuration parameters that are relevant to all test modes.

cmd

The parameter cmd sets the number of commands to run for each thread of the
performance test. This parameter is only valid if stop_sec is = 0. The minimum value for
cmd is 1, and the maximum value is 223.

The default value for cmd is 20,000.

stop_sec

The parameter stop_sec sets the demo application run time in seconds. The minimum value
for stop_sec is 0. There is no maximum value.

If the value for stop_sec is greater than zero, the demo program will run for the specified
time. If the value for stop_sec is equal to zero, the demo program will run the number of
commands specified by the configuration parameter cmd.

The default value for stop_sec is 10 seconds.
DX Software Development Kit User Guide, USR-0039-A04 Page 56
Exar Confidential

max_per_run

The parameter max_per_run sets the maximum number of commands for a single run of
each thread.

This parameter should be used to limit the amount of commands that execute during a
single pass of the demo application if there are too many commands for the amount of
allocated memory resources. The demo application will allocate up to max_per_run
commands for each thread and submit the allocated commands repeatedly, until stop_sec
has expired or cmd commands have been tested.

If (cmd < max_per_run) then each thread's allocated command num = cmd; # times
cmd operations submitted = 1.

If (cmd >= max_per_run) then each thread's allocated command num=max_per_run;
times cmd operations submitted = cmd/max_per_run.

The default value for max_per_run is 200.

thread

The parameter thread sets the number of threads to spawn for all tests. The value selected
for thread should be a multiple of the number of CPUs available in the system.

If thread is set to zero, the demo application will allocate the number of threads based on
the available number of CPU cores. In synchronous mode, thread = 3 * CPU cores; in
asynchronous mode, thread = 1.5 * CPU cores.

The minimum value for thread is 1, and the maximum value is 8192. The default value for
thread is 0.

sess_per_thread

The parameter sess_per_thread sets the number of sessions to run for all threads. This
parameter is used primarily for testing a large number of sessions, for example, thousands
of sessions.

The minimum value for sess_per_thread is 1; the maximum value must satisfy the
condition thread * sess_per_thread < max_session_num. The default value for
sess_per_thread is 1.

7.1.8.3 Raw Acceleration Configuration Settings
This section lists the configuration parameters that are specific to the Raw Acceleration
tests.

async

The parameter async specifies whether the Raw Acceleration operations should be run in
synchronous or asynchronous mode. This parameter is only valid if test_raw_pp is enabled.

The default value for async is asynchronous mode.
DX Software Development Kit User Guide, USR-0039-A04 Page 57
Exar Confidential

pkt_size

The parameter pkt_size specifies the packet size for each Raw Acceleration command.

The maximum value for pkt_size is 512 Kbytes.

The default value for pkt_size is 32768.

src_data_file

The parameter src_data_file specifies the source data file name using either a relative or
absolute path.

Several comments must be made about the size of the source data file. For the sake of
discussion, let “file_size” represent the size in bytes of the configured source data file.

1. If file_size ≥ (pkt_size * max_per_run), then the demo will read (pkt_size *
max_per_run) bytes from the source data file to construct max_per_run number of
commands, each pkt_size bytes in length.
For example, if file_size = 800 KB, pkt_size = 4 KB, and max_per_run = 100, the
demo application will read the first 400K bytes from the specified source data file to
form 100 commands, each 4 KB in length. The remaining 400K bytes are not used.

2. If file_size < (pkt_size * max_per_run), the demo application will read the entire
source data file to construct (file_size / pkt_size) number of commands, each
pkt_size bytes in length. If there are still some unread bytes in the source data file
but not enough to form a command that is pkt_size in length, the demo application
will combine the remaining bytes in the source data file with enough of the starting
bytes of the source data file to form a command of pkt_size length.
For example, if file_size is 800 KB, pkt_size = 64 KB, and max_per_run = 100, the
demo application will read 768K bytes from the source data file to form 12 com-
mands that are 64 KB in length, and then append the first 32 KB of the source data
file to the last remaining 32K bytes to form another 64 KB command, for a total of
13 64KB commands. These 13 64KB commands are looped to form the 100
(max_per_run) 64KB commands.

The source data file may also be left blank. If the source file is left blank, the demo
application will create a 256 byte file that contains the values 0x00 to 0xFF (0x00, 0x01,
..., 0xFF, 0x00, 0x01, ...).

The default value for src_data_file is demo, the executable file generated when the SDK
was built.

en_alg_conf

The parameter en_alg_conf specifies whether the demo application will continuously run all
selected transforms or will run the specified transform once.

The default value for en_alg_conf is to run the configured transform once.
DX Software Development Kit User Guide, USR-0039-A04 Page 58
Exar Confidential

direction

The parameter direction sets whether the Raw Acceleration test is in the encode only
direction, decode only direction, or both. This parameter is only valid if en_alg_conf is = 1.

The default value for direction is both encode and decode direction.

comp_algo

The parameter comp_algo sets the Raw Acceleration compression algorithm. This
parameter is only valid if en_alg_conf is = 1.

The valid values for comp_algo are:

• NONE

• LZS

• ELZS

• GZIP

• DEFLATE

• ZLIB

The default value for comp_algo is DEFLATE.

stateful_comp

The parameter stateful_comp is used to select stateful compression. This parameter is only
valid if comp_algo is = DEFLATE, GZIP or ZLIB.

The valid values for stateful_comp are:

• 1 = stateful

• 0 = stateless

The default value for stateful_comp is stateless.

enc_algo

The parameter enc_algo sets the Raw Acceleration encryption algorithm. This parameter is
only valid if en_alg_conf is = 1.

The valid values for enc_algo are:

• NONE

• AES_CBC

• AES_CTR

• AES_ECB

• AES_GCM
DX Software Development Kit User Guide, USR-0039-A04 Page 59
Exar Confidential

• AES_XTS

• 3DES_CBC

• ARC4

The default value for enc_algo is NONE.

seg_hash_algo

The parameter seg_hash_algo sets the Raw Acceleration segment hash algorithm. This
parameter is only valid if en_alg_conf is = 1.

The valid values for seg_hash_algo when using the Raw Acceleration API are:

• NONE

• HASH_SHA1

• HASH_SHA256

• HASH_SHA384

• HASH_SHA512

• HASH_MD5

• HMAC_SHA1

• HMAC_SHA256

• HMAC_SHA384

• HMAC_SHA512

• HMAC_MD5

• SSLMAC_MD5

• SSLMAC_SHA1

• SSLMAC_SHA256

• AES_GCM_MAC (enc_algo must be set to AES_GCM)

• AES_GMAC

• AES_XCBC

The default value for seg_hash_algo is NONE.

7.1.8.4 Public Key Configuration Settings
This section lists the configuration parameters that are relevant to public key operations.

pk_algo

The parameter pk_algo specifies the public key algorithm. This parameter is only valid if
en_alg_conf is = 1.
DX Software Development Kit User Guide, USR-0039-A04 Page 60
Exar Confidential

The valid values for pk_algo are:

• DH

• RSA

• DSA

• ECDH

• ECDSA

• ALL

The default value for pk_algo is RSA.

pk_mbits

The parameter pk_mbits specifies the key size in bits for the public key algorithm. This
parameter is only valid if en_alg_conf is = 1.

The valid values for pk_mbits are:

• DH: 1024, 1536, 2048, 3072, 4096

• RSA: 1024, 2048, 4096

• DSA: 1024, 2048, 4096

• ECDH: 192, 224, 256, 384, 521

• ECDSA: 192, 224, 256, 384, 521

The default value for pk_mbits is 256 for ECDH/ECDSA, and 1024 for all others.

7.1.8.5 RNG Configuration Settings
This section lists the configuration parameter that is relevant to random number generation
operations.

rng_pkt_size

The parameter rng_pkt_size specifies the random number generator packet size for a Raw
Acceleration session. The maximum value for this parameter is 2048 bytes.

The default value for rng_pkt_size is 128.

7.1.8.6 DRBG Configuration Settings
This section lists the configuration parameters that are relevant to deterministic random bit
generation operations.

drbg_algo

The parameter drbg_algo specifies the underlying cryptography algorithm used by the
DRBG. The valid values are:
DX Software Development Kit User Guide, USR-0039-A04 Page 61
Exar Confidential

• AES_CTR

• DUAL_EC

• ALL

The default value for drbg_algo is AES_CTR.

drbg_bits_per_request

The parameter drbg_bits_per_request specifies the number of pseudo-random bits to be
returned from the DRBG generate function. The value for drbg_bits_per_request must be
less than or equal to DRE_DRBG_MAX_NUM_BITS_PER_REQ, which is defined in
dre_config.h. The configured value will be aligned to the closest byte boundary as
necessary, e.g. requesting 1020 bits will return 1024 bits.

The default value for drbg_bits_per_request is 1024 bits.
DX Software Development Kit User Guide, USR-0039-A04 Page 62
Exar Confidential

7.2 sdemo Application
The sdemo application is a simplified version of the demo application. The sdemo
application parses the configuration file, reads the data from the specified source file,
performs the specified operation, and then outputs the result to the specified destination
file. For encryption and hash, the source data is processed in a single command. However,
for stateful compression commands with non-zero block sizes, the source data may be read
block-by-block and then each data block may be submitted as a unique SDK command. For
stateful compression commands, the source file or block size must be less than or equal to
400MB.

7.2.1 sdemo Configuration Files
The configuration file parameters should be set to appropriate values before running the
sdemo application.

Two configuration files, sdemo.encode.cfg.xml and sdemo.decode.cfg.xml, are used to set
the test parameters of the sdemo application. The output file of the sdemo encode test is
used as the input source file for the sdemo decode test. The output file of the sdemo
decode test should be identical to the input source file for the sdemo encode test.

7.2.1.1 File Settings

src_data_file

The parameter src_data_file specifies the source data file name. The source data file name
cannot be left blank, otherwise an error will occur. The directory path to the source data file
may be relative or absolute.

If the configuration file is set for a decode MAC operation, the last MAC_SIZE specified by
the MAC algorithm will be treated as the MAC data.

The default value for src_data_file is ”README.public” in the encode configuration file, and
“README.public.encode” in the decode configuration file.

dst_data_file

The parameter src_data_file specifies the destination data file name. The sdemo application
will create the destination data file if it does not exist, and will overwrite an existing file of
the same name. The directory path to the destination data file may be relative or absolute.

The output result is written directly to destination file in binary mode; no header precedes
the data.

The default value for dst_data_file is README.public.encode in the encode configuration file
and README.public.check in the decode configuration file.
DX Software Development Kit User Guide, USR-0039-A04 Page 63
Exar Confidential

7.2.1.2 Transform Settings

direction

The parameter direction specifies whether the intended operation is an encode or decode
operation.

The valid values for direction are:

• 1 = encode

• 0 = decode

The default value for direction is encode in the file sdemo.encode.cfg.xml, and decode in
the file sdemo.decode.cfg.xml .

op_type

The parameter op_type specifies the general algorithm type for the sdemo test. The exact
algorithm is specified by the parameters comp_algo, enc_algo, and seg_hash_algo, which
are defined below.

The valid values for op_type are:

• COMP

• ENC

• SEG_HASH

• PASS_THRU

For backwards compatibility to DX SDK version 1.x.x, the parameter name algo and the
setting PASSTH are also recognized.

The default value for op_type is COMP.

comp_algo

The parameter comp_algo specifies the compression algorithm for the sdemo test. This
parameter is only valid if op_type is = COMP.

The valid values for comp_algo are:

• LZS

• ELZS

• GZIP

• DEFLATE

• ZLIB

The default value for comp_algo is DEFLATE.
DX Software Development Kit User Guide, USR-0039-A04 Page 64
Exar Confidential

stateful_comp

The parameter stateful_comp is used to select stateful compression. This parameter is only
valid if op_type is = COMP and comp_algo is = DEFLATE, GZIP or ZLIB.

The valid values for stateful_comp are:

• 1 = stateful

• 0 = stateless

For backwards compatibility, the parameter name stateful is also recognized.

The default value for stateful_comp is stateless.

block_size

The parameter block_size specifies the block size or stateful command size in bytes for
stateful compression operations. This parameter is only valid if stateful_comp is enabled.

Each block of data in the source file will be submitted as a unique command. Setting
block_size to zero will force the data in the source file to be submitted as a single
command. The maximum value for block_size is 400MB.

The default value for block_size is zero.

comp_mode

The parameter comp_mode specifies the Huffman coding for the GZIP and DEFLATE
compression algorithms. This parameter is only meaningful when op_type = COMP, and
comp_algo = GZIP, ZLIB or DEFLATE.

The valid values for comp_mode are:

• STORE

• STATIC

• DYNAMIC

• OPTIMAL

The default value for comp_mode is OPTIMAL.

enc_algo

The parameter enc_algo specifies the encryption algorithm for the sdemo test. This
parameter is only valid if op_type is = ENC.

The valid values for enc_algo are:

• AES_CBC_128, AES_CBC_192, AES_CBC_256

• AES_CTR_128, AES_CTR_192, AES_CTR_256

• AES_ECB_128, AES_ECB_192, AES_ECB_256
DX Software Development Kit User Guide, USR-0039-A04 Page 65
Exar Confidential

• AES_GCM_128, AES_GCM_192, AES_GCM_256

• AES_XTS_256, AES_XTS_512

• 3DES_CBC

• ARC4 (XR9240 only)

The default value for enc_algo is AES_CBC_128.

seg_hash_algo

The parameter seg_hash_algo specifies the segment hash algorithm for the sdemo test.
This parameter is only valid if op_type is = SEG_HASH.

The valid values of seg_hash_algo for both encode and decode are:

• HMAC_SHA1, HMAC_SHA256, HMAC_SHA384 ,HMAC_SHA512 (XR9240 only),
HMAC_MD5

• SSLMAC_SHA1, SSLMAC_SHA256, SSLMAC_MD5

• AES_GMAC_128, AES_GMAC_192, AES_GMAC_256

• AES_XCBC

The valid values of seg_hash_algo for encode only are:

• HASH_SHA1, HASH_SHA256, HASH_SHA384, HASH_SHA512 (XR9240 only),
HASH_MD5

The default value for seg_hash_algo is HASH_SHA1.

crc_config

The parameter crc_config specifies whether CRC is enabled or disabled.

The valid values for crc_config are:

• CRC Disabled

• Host CRC Enabled

• Hardware CRC Enabled

The default value for crc_config is CRC Disabled.

cmd_target

The parameter cmd_target specifies whether commands are sent to a specific Exar device,
sent to the software library, or load balanced.

The valid values for cmd_target are:

• 0-31: Commands sent to a specific Exar device number (the max number of devices
supported by the SDK is 32)

• 32: All commands sent to software library
DX Software Development Kit User Guide, USR-0039-A04 Page 66
Exar Confidential

• 33: Device selected using load balancing algorithm

The default value for cmd_target is Load Balanced.

7.2.2 sdemo Key File
A key file, sdemo.key, is used to define the keys for the encryption and MAC algorithms
supported by the sdemo application.

• AES_CBC_128, AES_CBC_192, AES_CBC_256

• AES_CTR_128, AES_CTR_192, AES_CTR_256

• AES_ECB_128, AES_ECB_192, AES_ECB_256

• AES_GMAC_128, AES_GMAC_192, AES_GMAC_256

• AES_XTS_256, AES_XTS_512

• 3DES_CBC_192

• ARC4_2048

• HMAC_MD5, HMAC_SHA1, HMAC_SHA256, HMAC_SHA384, HMAC_SHA512

The key file parameters should be set to appropriate values before running the sdemo
application. In the sample key file, there is one key defined for each algorithm. To edit a
single key value, replace the entry for the specified algorithm with a new key (in hex
format); the remaining keys may be left unchanged.

7.2.3 sdemo IVAAD File
A IV and AAD file, ivaad.key, is used to define the IV and AAD data for those algorithms
supported by the sdemo application that require this information.

• AES_CBC_128, AES_CBC_192, AES_CBC_256

• AES_CTR_128, AES_CTR_192, AES_CTR_256

• AES_GCM_128, AES_GCM_192, AES_GCM_256

• AES_XTS_256, AES_XTS_512

• 3DES_CBC

Note that the AAD input for an AES_GMAC_128, 192, or 256 bit key is in the source data
file, not in the AAD segment of the ivaad.cfg.xml file, while the AAD input for an
AES_GCM_128, 192, or 256 bit key is in the AAD segment of the ivaad.cfg.xml file.

7.2.4 sdemo DRBG File
An example DRBG file, sdemo.drbg.xml, defines the DRBG data for testing the DRBG
function using the sdemo application. In normal operating mode, the DRBG generates an
unpredictable pattern of bytes. This file is used to seed the DRBG with a known input so
that the output may be verified against the known output.
DX Software Development Kit User Guide, USR-0039-A04 Page 67
Exar Confidential

The SDK must have been built with the option DRE_DEBUG_DRBG enabled in the driver
configuration file to test the DRBG. The sdemo DRBG test supports the following algorithms.

• AES_128, AES_192, AES_256

• P_256, P_384, P_521

• SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
DX Software Development Kit User Guide, USR-0039-A04 Page 68
Exar Confidential

7.3 example Application
The example application provides a sample reference to demonstrate using the DX SDK
APIs for data operations such as passthrough, compression/decompression, encryption/
decryption and authentication.

7.3.1 Raw Session example Application
This section describes the basic flow for submitting a packet of data for processing in a Raw
session in standard synchronous and asynchronous modes, as well as synchronous FPGA
mode.

7.3.1.1 Synchronous Mode
1. Call DRE_symKeySet() to create the symmetric keys if necessary.

2. Set the parameters for creating a new Raw session.

3. Call DRE_rawSessOpen() to open an encode Raw session.

4. Call DRE_rawSessSubmitSync() to process a packet of data using the encode Raw
session.

5. Call DRE_rawSessOpen() to open a decode Raw session.

6. Call DRE_rawSessSubmitSync() to process a packet of data using the decode Raw
session. The data to decode is taken from the destination buffer from the process
in step 4.

7. Compare the decode data in the destination buffer from step 7 to the data in the
source buffer from step 4.

8. Call DRE_rawSessClose() to close the encode Raw session.

9. Call DRE_rawSessClose() to close the decode Raw session.

10. Call DRE_symKeyDestroy() to destroy the symmetric keys if necessary.

7.3.1.2 Asynchronous Mode
1. Call DRE_symKeySet() to create the symmetric keys if necessary.

2. Set the parameters for creating a new Raw session.

3. Call DRE_rawSessOpen() to open an encode Raw session.

4. Call DRE_rawSessSubmitAsync() to process a packet of data using the encode Raw
session.
DX Software Development Kit User Guide, USR-0039-A04 Page 69
Exar Confidential

5. Wait for the corresponding callback notification that the data packet has
completed.

6. Call DRE_rawSessOpen() to open a decode Raw session.

7. Call DRE_rawSessSubmitAsync() to process a packet of data using the decode Raw
session. The data to decode is taken from the destination buffer for the process in
step 4.

8. Wait for the corresponding callback notification that the data packet has
completed.

9. Compare the decoded data in the destination buffer from step 8 to the data in the
source buffer from step 4.

10. Call DRE_rawSessClose() to close the encode Raw session.

11. Call DRE_rawSessClose() to close the decode Raw session.

12. Call DRE_symKeyDestroy() to destroy the symmetric keys if necessary.

7.3.1.3 Synchronous FPGA Mode
1. Call DRE_symKeySet() to create the symmetric keys if necessary.

2. Set the parameters for creating a new Raw session.

3. Call DRE_rawSessOpenEx() to open an extended encode Raw session.

4. Call DRE_rawSessSubmitSyncEx() to request the FPGA to process a packet of data
using the encode Raw session.

5. Call DRE_rawSessOpenEx() to open an extended decode Raw session.

6. Call DRE_rawSessSubmitSyncEx() to request the FPGA to process a packet of data
using the decode Raw session. The data to decode is taken from the destination
buffer from the process in step 4.

7. Compare the decode data in the destination buffer from step 7 to the data in the
source buffer from step 4.

8. Call DRE_rawSessCloseEx() to close the extended encode Raw session.

9. Call DRE_rawSessCloseEx() to close the extended decode Raw session.

10. Call DRE_symKeyDestroy() to destroy the symmetric keys if necessary.
DX Software Development Kit User Guide, USR-0039-A04 Page 70
Exar Confidential

7.3.1.4 Asynchronous FPGA Mode
1. Call DRE_symKeySet() to create the symmetric keys if necessary.

2. Set the parameters for creating a new Raw session.

3. Call DRE_rawSessOpenEx() to open an extended encode Raw session.

4. Call DRE_rawSessSubmitAsyncEx() to process a packet of data using the encode
Raw session.

5. Wait for the corresponding callback notification that the data packet has
completed.

6. Call DRE_rawSessOpenEx() to open an extended decode Raw session.

7. Call DRE_rawSessSubmitAsyncEx() to request the FPGA to process a packet of data
using the decode Raw session. The data to decode is taken from the destination
buffer for the process in step 4.

8. Wait for the corresponding callback notification that the data packet has
completed.

9. Compare the decoded data in the destination buffer from step 8 to the data in the
source buffer from step 4.

10. Call DRE_rawSessCloseEx() to close the extended encode Raw session.

11. Call DRE_rawSessCloseEx() to close the extended decode Raw session.

12. Call DRE_symKeyDestroy() to destroy the symmetric keys if necessary.

7.3.2 PK example Application
This section describes the basic flow of the PK example application.

1. Call DRE_ExamplePkCreateKey() which calls DRE_pkKeyCreateKey() to create the
appropriate PK keys according to the PK key type.

2. Call DRE_ExamplePkExecuteCmd which calls DRE_pkExecCmd to execute the PK
command according to the PK command type.

3. Wait for the callback function DRE_ExamplePkCallBack() to notify the Example
application that the PK commands have completed. Check whether the PK
command result is ok or not in the callback function.

4. Call DRE_pkKeyDestroy() to destroy all the PK keys which were created in step 1.
DX Software Development Kit User Guide, USR-0039-A04 Page 71
Exar Confidential

7.4 Debugging Tools
The DX SDK includes three tools that are useful when debugging: dx_monitor, dx_status,
and dx_diag. The command "make install" must be issued during the SDK build process in
order to access the debugging tools man pages.

7.4.1 Monitor Tool
The dx_monitor tool can be used to report the temperature of each installed Exar device. It
is intended to be used in a production environment.

For help using the dx_monitor tool, enter:

For the detailed man pages of the dx_monitor tool, enter:

7.4.2 Status Tool
The dx_status tool can be used to report the number of installed DX cards, the PCIe version
that is supported by the local host, the PLX switch speed and width capabilities (if present),
and the PCIe speed and width for which the DX cards are operating. Note that running the
status tool requires lspci version 2.2.7 or higher.

For the detailed man pages of the dx_status tool, enter:

7.4.3 Diagnostic Tool
The tool has many options that are useful for debugging a DX card, such as the ability to
run POST on a specific Exar device or all Exar devices, ability to turn on the Flash LED to
help map the physical to logical slot numbers, enable or disable the PCIe link to each Exar
device, inject a false error, and more.

! Caution

The dx_diag tool is intended to be used in a non-production test
environment. If used incorrectly in a production environment,
dx_diag may cause serious problems with the system.

For help using the dx_diag tool, enter:

dx_monitor -h

man dx_monitor

man dx_status
DX Software Development Kit User Guide, USR-0039-A04 Page 72
Exar Confidential

For the detailed man pages of the dx_diag tool, enter:

dx_diag -h

man dx_diag
DX Software Development Kit User Guide, USR-0039-A04 Page 73
Exar Confidential

8 Error Handling
This chapter provides supplemental material to help DX SDK users understand the types of
errors they may encounter and the recommended actions that should be taken.

The error handling in this section pertains to Exar’s Raw Acceleration API.

8.1 Definition of Error Status Codes
The DX SDK provides APIs to facilitate the customer application design. Each of the APIs
return a 32-bit status code to the application. SDK provides macros to easily extract useful
information from the status code.

DRE_IS_RESULT_ERR(status)
This macro returns true if any error is found in the status code, and returns false if no
errors are found.

DRE_IS_CMD_PROC_BY_SW(status)
This macro returns true if the command was processed by the software library and
returns false otherwise.

DRE_GET_ERR_CATEGORY(status)
This macro returns the category field of the error code.

DRE_GET_ERR_SEVERITY(status)
This macro returns the severity field of the error code.

DRE_GET_ERR_FLAG(status)
This macro returns the flags field of the error code.

Please refer to dre_err_define.h for more information.

After each command completes, the user application should call the macro
DRE_IS_RESULT_ERR() to identify whether the operation was successful. If the operation
was successful, the user application should also call DRE_IS_CMD_PROC_BY_SW() to
determine whether the command was completed by the software library. For more
information, refer to Table 8-3.

If an error occurred, then the user can extract the error category from the status code
using the macro DRE_GET_ERR_CATEGORY(). Typically, the user application will only
require the error category to determine the action required to handle the error. The status
code information is also sent to the log file.

The status code is a 32-bit value which is defined in Table 8-1. Each field is described in
more detail in the sub-sections that follow.
DX Software Development Kit User Guide, USR-0039-A04 Page 74
Exar Confidential

Table 8-1. Error Status Fields (Sheet 1 of 2)

Bits Name Description
31:28 Status Status of the test.

0000: DRE_OK
0100: DRE_WARN
0010: DRE_INFO
1110: DRE_ERR
All other values are reserved.

27:24 Flag Error flag bits returned by the API.
xxx0: The command was not processed by the software library
xxx1: The command was processed by the software library
xx0x: No expansion occurred during the compression operation.
xx1x: A compression operation expanded beyond the data length

plus threshold that was set when the session was opened.
All other values are reserved.

23:20 Reserved
19:16 Category The error category returned by the API.

0x00: DRE_NO_ERR
0x01: DRE_SYSTEM_BUSY
0x02: DRE_USER_USAGE
0x03: DRE_HARDWARE_UNCONFIRMED
0x04: DRE_HARDWARE_CONFIRMED
All other values are reserved.
DX Software Development Kit User Guide, USR-0039-A04 Page 75
Exar Confidential

Table 8-2 lists the specific error codes (bits [7:0] of the status code) that apply to the Exar
devices and DX cards. The shaded error codes are obsoleted.

15:8 Module code Sub-module where error occurred.
This values for this field are product specific.
0 = DRE_GENERAL
1 = DRE_OSAL
2 = DRE_DRIVE_FRAMEWORK
3 = DRE_REGISTER
4 = DRE_PP
5 = DRE_PDM
6 = DRE_PK
7 = DRE_SESSION_MANAGER
8 = DRE_NOTIFY_MANAGER
9 = DRE_DEV_MANAGER
10 = DRE_KEY_MANAGER
11 = DRE_RNG_MANAGER
12 = DRE_LB_MANAGER
13 = DRE_SW_LIB
14 = DRE_FILE_PARSE
15 = DRE_LOG
16 = DRE_USER_SPACE_CONTEXT_MANAGER
17 = DRE_USER_SPACE_API
18 = DRE_POST
19 = DRE_HW
20 = DRE_FLASH
21 = DRE_SESSION_HEADER
22 = DRE_MAILBOX
23 = DRE_SDDINIT
24 = DRE_GLOBALCONFIG
25 = DRE_CHARDEV
26 = DRE_DRBG_MANAGER
27 = DRE_STATISTICS
28 = DRE_ERRHANLDING

7:0 Error Code The returned detailed error code.
This values for this field are product specific. Please refer to Table
8-2 for details.

Table 8-1. Error Status Fields (Sheet 2 of 2)

Bits Name Description
DX Software Development Kit User Guide, USR-0039-A04 Page 76
Exar Confidential

Table 8-2. Error Code Field Description

Value Name Description
0 DRE_C_NO_ERROR No error
1 DRE_C_GENERAL_ERROR Unclassified error, has to check log to get the detail
2 DRE_C_INVALID_VALUE A specified parameter has an illegal value
3 DRE_C_INVALID_CARD_NUM The card number is an illegal value
4 DRE_C_NOT_ENOUGH_RESOURCE Failed to allocate the memory resource
5 DRE_C_REG_VERIFY The value read from the register is not equal to the

written value
6 DRE_C_FILE_OPEN Failed to open file
7 DRE_C_FILE_END The end of the file was reached
8 DRE_C_BUSY Resources are busy; call again later
9 DRE_C_IRQL_TOO_HIGH IRQL of calling context is too high
10 DRE_C_TIMER_STOPPED Timer has stopped
11 DRE_C_WORK_ITEM_SCHEDULED The work item has already been scheduled
12 DRE_C_WAITING_INTERRUPTED Semaphore has been interrupted
13 DRE_C_CMD_NODE_IN_USE Command node is in use
14 DRE_C_CMD_FREE_LIST_EMPTY Free list is empty
15 DRE_C_CMD_PENDING_QUEUE_

EMPTY
Pending queue is empty

16 DRE_C_NOT_FIND Search for resource failed
17 DRE_C_RESOURCE_NOT_INIT Resource not initialized
18 DRE_C_INIT_CARDS Failed to initialize cards
19 DRE_C_GET_KEY_INDEX Get key index failed
20 DRE_C_WRITE_KEY Write key failed
21 DRE_C_CRC_VERIFICATION CRC verification failed
22 DRE_C_DIF_VERIFICATION DIF verification failed
23 DRE_C_BUFLENGTH_NOT_ENOUGH Buffer too small to store data
24 DRE_C_RESWRITE_READ_NOT_

EQUAL
Value read from register is not what was written

25 DRE_C_RECOVERY_UNDER_
PROCESSIN

Error recovery process is still running

26 DRE_C_POWER_STATE_TRANSIT Power state transition failed
27 DRE_C_FLASH_DATA_CORRUPTED A flash region is corrupted
28 DRE_C_PLL_STATUS PLL status error
29 DRE_C_LANE_STATUS PCIe lane status error
30 DRE_C_CMD_NO_RESULT Command result is missing
31 DRE_C_TIMEOUT Command time out
32 DRE_C_DAEMON_EXIT Daemon exit
33 DRE_C_HELP Internal use
34 DRE_C_EXCEED_LIMIT Exceeded number of allowed devices
35 DRE_C_DUPLICATED Resource duplicated
DX Software Development Kit User Guide, USR-0039-A04 Page 77
Exar Confidential

36 DRE_C_HMAC_CHECK HMAC verification failed
37 DRE_C_GCM_TAG_CHECK GCM tag verification failed
38 DRE_C_COMP Compression failed
39 DRE_C_DECOMP Decompression failed
40 DRE_C_INVALID_CALL Improper function was called
41 DRE_C_SYSTEM Failed to call system APIs
42 DRE_C_FILEFORMAT File format error
43 DRE_C_DST_OVERFLOW Destination buffer overflow
44 DRE_C_SRC_DATA_CORRUPTED Source data corrupted
45 DRE_C_DATA_VERIFICATION Data pair wise test failed
46 DRE_C_HW_EXE_ERR Hardware execute command failed
47 DRE_C_OVERHEAT Hardware temp is over the threshold
48 DRE_C_CARD_UNDER_RECOVERY Card is undergoing error recovery
49 DRE_C_HOST_COMPLETE_ABORT Invalid pAddr error
50 DRE_C_DSA_VERIFY_FAILED DSA verification failed
51 DRE_C_DSA_SIGN_FAILED DSA sign failed
52 DRE_C_LOAD_CODE_FAILED Code load failed
53 DRE_C_UNKNOWN_ERR Unknown error
54 DRE_C_RNG_EXCEED_MAX_SAFE_N

UMBER
RNG exceeded the max safe number

55 DRE_C_POST_FAILED POST failed
56 DRE_C_RESOURCE_LEAK User did not release a resource
57 DRE_C_NOT_SUPPORT Operation is not supported
58 DRE_C_PACKET_PENDING Internal use
59 DRE_C_PACKET_KEEPING Internal use, packet not releasing the session
60 DRE_C_PACKET_JUST_RECLAIM Internal use, packet no longer used, is reclaimed to

the packet pool, but did not call its callback function
or release its sync semaphore

61 DRE_C_ECPOINT_VERIFY_FAILED EC point verify failed
62 DRE_C_NEED_RESEED Internal use, DRBG instance needs reseeding
63 DRE_C_NOT_ENABLED The specified operation is not enabled. (e.g. submit

PK command but pk_enable=0 in driver.cfg)
64 DRE_C_DMA_MAP_FAILED DMA mapping failed
65 DRE_C_CHIP_FAILED Exar device initialization failed
66 DRE_C_READ_FAILED Read file failed
67 DRE_C_XML_READ_FAILED Parse XML file failed
68 DRE_C_STATEFUL_SESS_FAILED Command in a stateful session failed (will result in

all commands in that session to fail)
255 DRE_C_APP_ERR For use by customer applications; not used by the

DX SDK

Table 8-2. Error Code Field Description

Value Name Description
DX Software Development Kit User Guide, USR-0039-A04 Page 78
Exar Confidential

8.1.1 Error Category
The Error Category field should be read by calling DRE_ERR_CATEGORY() or by reading the
error category field, bits [19:16] of the error code if the returned status from an API
function call returns an error status. This field of the error code defines the error category
as one of the following:

DRE_ERR_SYSTEM_BUSY
A System Busy error rarely occurs, has no impact on other API calls, and the call itself is
likely to be correct. The user should resubmit the API call until the error is no longer
reported. For example, if a user calls DRE_rawSessOpen() and receives the error code
with category DRE_ERR_SYSTEM_BUSY, the processing of this call may be caused by
memory resource allocation failure. In this case, the user should call the routine again.

DRE_ERR_USER_USAGE
This error is purely a user failure, has no impact on other API calls, and the call or data
should be corrected before being resubmitted. Normally such an error is caused by
passing the wrong parameter to the API or by corrupted data. The user should correct
the parameter or data and resubmit the command. For example, if the user calls the API
DRE_rawSessSubmitAsync() and supplies an invalid algorithm parameter, the error
code DRE_ERR_USER_USAGE will be returned. Another example would be if the eLZS
software verification failed due to a RCRC error, then error code
DRE_ERR_USER_USAGE will be returned with DRE_C_SRC_DATA_CORRUPT in status
code bit [7:0] set to indicate that the data is corrupted.

DRE_ERR_HARDWARE_UNCONFIRMED_ERR
This category of error represents a data verification error. Users may retrieve statistics
on the frequency of this error category using the function DRE_cardInfoGet(). If this
error occurs infrequently, the user should resubmit the failed command. If this error
occurs frequently, the user should reset the hardware. If the problem persists, the hard-
ware has failed and the user should contact technical support.

DRE_ERR_HARDWARE_CONFIRMED_ERR
This error is a confirmed hardware error, and may occur if the hardware has entered the
error state. The user must perform a full reset of the hardware, reload the driver, and
re-initialize the SDK. The user should then try resubmitting the command. If the prob-
lem persists, the hardware has failed and the user should contact technical support.

8.1.2 Error Flags
The Flags field of the error code provides the application additional information about the
command result. The SDK provides a macro DRE_GET_ERR_FLAG() to easily retrieve the
error Flags.

The Flags identify whether the command was processed by the hardware or by the software
library, and also whether or not there was expansion of a compression command.

The DX SDK has the option of processing all commands for a particular session in hardware
or in software. Please refer to the “Failover” section for more information.
DX Software Development Kit User Guide, USR-0039-A04 Page 79
Exar Confidential

The application must evaluate the return values of both DRE_IS_RESULT_ERR() and
DRE_IS_CMD_PROC_BY_SW() macros in order to determine the error cause and corrective
action. Table 8-3 defines the relationship between these two macros and the error
conditions.

If a hardware error occurs frequently (more than once a week or once per million
commands), the host software should alert the operator to read the SDK log file to
determine the cause of the problem. If needed, issue “make report” in the root path of the
SDK directory and send the generated tar file to technical support for evaluation.

Table 8-3. Combined Error Status and Flag Conditions (Sheet 1 of 6)

Failover CMD
Target

Status Field
DRE_IS_
RESULT_ERR
()

Software
Library Flag
Field
DRE_IS_CMD
_PROC_BY_
SW()

Description Action

X HW FALSE FALSE Command processed
by hardware without
errors.

None.
DX Software Development Kit User Guide, USR-0039-A04 Page 80
Exar Confidential

Disabled HW FALSE TRUE Case 1:
Command processed
but returned with a
hardware error.
Command then sent
to the software library
and is returned
without errors.

Call
DRE_cardInfoGet() to
determine the
hardware status.
The device status will
be OK because the
hardware failure was
not catastrophic. The
error may be ignored.
If the error reoccurs,
reset the device. If
the error still occurs
frequently, replace the
card.

Case 2:
Command cannot be
processed by the
hardware (e.g. device
has failed or is
recovering).
Command then sent
to the software library
and is returned
without errors.

This condition implies
a hardware error and
as a result will cause
all pending commands
to fail within a short
period of time.
Call
DRE_cardInfoGet() to
confirm the hardware
error status.
If the device was
taken offline by the
SDK due to a
hardware failure,
either continue
processing on the
remaining operational
devices or replace the
card.
If the device is
recovering, this error
can be ignored but the
status should be
tested again at a later
time.

Table 8-3. Combined Error Status and Flag Conditions (Sheet 2 of 6)

Failover CMD
Target

Status Field
DRE_IS_
RESULT_ERR
()

Software
Library Flag
Field
DRE_IS_CMD
_PROC_BY_
SW()

Description Action
DX Software Development Kit User Guide, USR-0039-A04 Page 81
Exar Confidential

Disabled HW TRUE TRUE Case 1:
Command processed
but returned with a
hardware error.
Command then sent
to the software library
and is returned with
errors.

This condition implies
a data corruption
error.
Verify the source data.
If the data is
correctable, resubmit
the command.

Case 2:
Command cannot be
processed by the
hardware (e.g. device
has failed or is
recovering).
Command then sent
to the software library
and is returned with
errors.

X HW TRUE FALSE Command returned
with error and is not
sent to software
library.
This condition may be
caused by limited
system resources or
an invalid command
parameter.

Call
DRE_ERR_CATEGORY(
) for more information
about the error.
If the error category is
System Busy,
resubmit the
command.
If the error category is
User Usage, correct
the invalid
parameter(s) and
resubmit the
command.

Table 8-3. Combined Error Status and Flag Conditions (Sheet 3 of 6)

Failover CMD
Target

Status Field
DRE_IS_
RESULT_ERR
()

Software
Library Flag
Field
DRE_IS_CMD
_PROC_BY_
SW()

Description Action
DX Software Development Kit User Guide, USR-0039-A04 Page 82
Exar Confidential

Enabled HW FALSE TRUE Case 1:
Command processed
but returned with a
hardware error.
Command then sent
to the software library
and is returned
without errors.

Call
DRE_cardInfoGet() to
determine the
hardware status.
If the device status is
OK, the hardware
failure was not
catastrophic and the
error may be ignored.
If the error reoccurs,
reset the device. If
the error still occurs
frequently, replace the
card.

Case 2:
Command cannot be
processed by the
hardware (e.g. device
has failed or is
recovering).
Command then sent
to the software library
and is returned
without errors.

This condition implies
a hardware error and
as a result will cause
many commands to
fail within a short
period of time.
Call
DRE_cardInfoGet() to
confirm the hardware
error status.
If the device was
taken offline by the
SDK due to a
hardware failure,
either continue
processing on the
remaining operational
devices or replace the
card.
If the device is
recovering, this error
can be ignored but the
status should be
tested later.

Case 3:
All devices were in an
errored state when
the command was
submitted.
Command then sent
to the software library
and is returned
without errors.

In this case, all
submitted commands
will return with an
error.
Call
DRE_cardInfoGet() to
determine the
hardware status.
Reset all devices in an
unhealthy state.

Table 8-3. Combined Error Status and Flag Conditions (Sheet 4 of 6)

Failover CMD
Target

Status Field
DRE_IS_
RESULT_ERR
()

Software
Library Flag
Field
DRE_IS_CMD
_PROC_BY_
SW()

Description Action
DX Software Development Kit User Guide, USR-0039-A04 Page 83
Exar Confidential

Enabled HW TRUE TRUE Case 1:
Command processed
but returned with a
hardware error.
Command then sent
to the software library
and is returned with
errors.

This condition implies
a data corruption
error.
Call
DRE_ERR_CATEGORY(
) for more information
about the error.
If the error category is
User Usage, call
DRE_ERR_DETAIL_
CODE() for the
detailed error code.
If the error code is
DRE_C_SRC_DATA_
CORRUPTED, verify
the source data. and if
the data is
correctable, resubmit
the command.

Case 2:
Command cannot be
processed by the
hardware (e.g. device
has failed or is
recovering).
Command then sent
to the software library
and is returned with
errors.

Refer to the Action for
Case 1 above.

Case 3:
(Continued on next
page.)

Table 8-3. Combined Error Status and Flag Conditions (Sheet 5 of 6)

Failover CMD
Target

Status Field
DRE_IS_
RESULT_ERR
()

Software
Library Flag
Field
DRE_IS_CMD
_PROC_BY_
SW()

Description Action
DX Software Development Kit User Guide, USR-0039-A04 Page 84
Exar Confidential

Enabled HW TRUE TRUE Case 3:
All devices were in an
errored state when
the command was
submitted.
Command then sent
to the software library
and is returned with
errors.

This condition implies
a data corruption
error, input parameter
error, or that the
system was busy.
Call
DRE_ERR_CATEGORY(
) for more information
about the error.
If the error category is
System Busy,
resubmit the
command.
If error category is
User Usage, call
DRE_ERR_DETAIL_
CODE() for the
detailed code.
If the error code is
DRE_C_SRC_DATA_
CORRUPTED, verify
the source data, and if
the data is
correctable, resubmit
the command.
Otherwise correct the
invalid input
parameter(s) and
resubmit the
command.

X SW FALSE TRUE Command processed
by software without
errors

None.

X SW TRUE TRUE Command returned by
software library with
error.
This condition may be
caused by corrupted
source data or an
invalid command
parameter.

Call
DRE_ERR_CATEGORY(
) for more information
about the error.
If error category is
System Busy,
resubmit the
command.
If error category is
User Usage, correct
the invalid
parameter(s) and
resubmit the
command.

Table 8-3. Combined Error Status and Flag Conditions (Sheet 6 of 6)

Failover CMD
Target

Status Field
DRE_IS_
RESULT_ERR
()

Software
Library Flag
Field
DRE_IS_CMD
_PROC_BY_
SW()

Description Action
DX Software Development Kit User Guide, USR-0039-A04 Page 85
Exar Confidential

8.2 Failover
Failover controls the SDK’s behavior in the unlikely event off all Exar hardware in the
system failing. If failover is enabled in the driver configuration file, the SDK will process all
submitted commands using the software library. If failover is not enabled in the driver
configuration file, the submitted commands will not be processed and will return with an
error. The decision whether to failover to software will not occur during a recovery process.

8.3 Single Command Error Handling
If a command is retrieved from the hardware DMA ring with a hardware error flagged, the
DX SDK will handle this command with the process described in Figure 8-1. Commands that
have been submitted to the hardware, but complete with an error will be processed by the
software library, swlib, regardless of whether failover is enabled or disabled in the driver
configuration file.

For DX SDK versions 2.0.0L and later, the command processing behavior was modified
when an overflow error occurs. If the only error returned is an overflow error, the SDK will
return an error code from the API call but will not log the error message and will not send
the command to the software library. If multiple hardware errors are returned, one of which
is overflow, the SDK will print the error message and resubmit the command to the
software library.

For DX SDK versions 2.1.0L and later, if a single command in a synchronous mode stateful
session fails, the application may re-submit only the failed command if the failure is
considered recoverable, such as an overflow error or ring-full error.
DX Software Development Kit User Guide, USR-0039-A04 Page 86
Exar Confidential

8.4 Hardware Timeout Error Handling
The DX SDK maintains a 10 second interval a timer that is used to monitor a hardware
timeout condition. If the hardware does not respond within the timeout interval, the SDK
will soft reset the hardware and re-submit the commands from the DMA ring. If the
hardware recovers successfully, it will continue to accept commands.

The following flow chart describes this process.

Figure 8-1. Single Command Failure Error Processing
DX Software Development Kit User Guide, USR-0039-A04 Page 87
Exar Confidential

8.5 Overheated Condition Error Handling
Figure 8-3 illustrates the error handling by the DX SDK for detecting and recovering an
Exar device that is overheated. The left hand side of the flow diagram represents the
detection process while the right hand side represents the recovery process.

After the driver is loaded, the DX SDK programs the normal and overheated temperature
values set in the driver configuration file, driver.cfg.xml, into the XR9240 temperature
registers. If the XR9240 detects that its temperature has exceeded the configured
overheated temperature, it will trigger an overheat interrupt, causing the SDK to mark the
device as overheated, flash the Error LED, and stop submitting commands to that device.
Once the XR9240 temperature has returned to a value lower than the configured normal
temperature, the device will trigger an overheated recovery interrupt which will cause the
SDK to mark the device as normal, turn off the Error LED, and resume submitting
commands to that device.

Figure 8-2. Hardware Timeout Error Processing
DX Software Development Kit User Guide, USR-0039-A04 Page 88
Exar Confidential

8.6 PCIe Error Handling
DX SDK versions 2.0.0La and later support the standard PCIe Advanced Error Reporting
(AER) mechanisms and functions that are defined by the OS/kernel AER framework.

The DX SDK responds to all data integrity, PCIe error, and ILK interrupts generated by a
XR9240 device by attempting to recover the device via a soft reset.

8.6.1 Register Access Error Detection
To improve the robustness of the DX SDK error detection, the DX SDK implements a
timeout mechanism for every Exar device register access that requires a polling mechanism
to confirm whether the result is ready, e.g. to retrieve random bytes via API

Figure 8-3. Hardware Overheated Error Processing
DX Software Development Kit User Guide, USR-0039-A04 Page 89
Exar Confidential

DRE_rngRequestRaw() or to read temperature via API DRE_readTemp(). If more than 2
seconds have elapsed before the Exar device responds in those cases, the DX SDK will
abort the polling, and return a status with error code DRE_C_TIMEOUT.

The SDK will also test for a potential PCIe link down error whenever a register is accessed
and trigger the PCIe error handling flow if 0xFFFFFFFF is returned.

8.6.2 Link Speed and Width Degradation
This section describes the DX SDK handling of PCIe link speed and width degradation in
more detail. This feature is always enabled, regardless of the setting of the driver
configuration parameter “pcie_error_recovery_enable”. A PCIe link speed and width
degradation error will not increment the pcie_error_interval_threshold counter.

The PCIe error detection module verifies that the DX2040 card is working at Gen3 speed
and x8 width when the driver is loaded and again during a configurable interval. The default
value for the interval is 300 seconds, and may set to a different value in the configuration
file dre_config.h using the parameter DRE_NM_LINK_CHECK_INTERVAL_CNT. Setting
DRE_NM_LINK_CHECK_INTERVAL_CNT to zero will disables the link speed and width
verification. For testing purposes, a value of 20 seconds is recommended.

If the negotiated PCIe link width is not x8, the SDK will trigger a PCIe hot reset process to
recover the DX2040 card to x8 width. If the card recovers to x8 width, the SDK will log a
message that the recovery was successful. If the card does not recover to a x8 width, the
SDK will log a message that the recovery was not successful.

If the negotiated PCIe link speed is Gen1 (2.5GT/s), the SDK will trigger the PCIe link
retraining process. If the card recovers to Gen3 speed, the SDK will log a message that the
recovery was successful. If the card does not recover to Gen3 speed, the SDK will log a
message that the recovery was not successful.

If both the negotiated PCIe link width and speed are degraded, the SDK will trigger the
PCIe link retraining process and issue a PCIe hot reset.

It is assumed that the DX2040 card is connected to a slot that supports PCIe Gen3 x8 or
better. The SDK does not verify the slot capability. If a DX2040 card is installed in a slot
that does not support PCIe Gen3 x8, the recovery process will be triggered continuously on
every interval.

8.7 Data Corruption Error Handling
The XR9240 device is able to detect data integrity errors that occur in the PCIe interface or
XR9240 internal data path, and will notify the SDK via an interrupt if a data integrity error
occurs. The SDK always enabled the fencing mode of the XR9240 device. If a fatal data
integrity error occurs, the SDK will block the errored device from sending data to the result
buffer to prevent data corruption.

If the hardware reports a fatal ECC error, the SDK will try to recovery the device by issuing
a hot reset to the errored card. Commands that were previously submitted to that card will
be processed in software using swlib. If the recovery is successful, the SDK will send future
commands to that device. If the recovery failed, the SDK will take that card offline, and all
future commands will be submitted to other DX cards for processing.
DX Software Development Kit User Guide, USR-0039-A04 Page 90
Exar Confidential

Appendix A: Usage and Standards
Compliance of the Random Number
Generator

A.1 Overview
Exar's security processors and its DX Software Development Kit (SDK) provide a hardware
and software Random Number Generator (RNG) solution that is approved by the Federal
Information Processing Standards (FIPS) and National Institute of Standards and
Technology (NIST) regulatory agencies.

The Exar processor contains a random number generator that produces a nondeterministic
random number.

Customers may generate a cryptographic quality pseudo-random number, known as a
Deterministic Random Number Bit Generator (DRBG), by implementing their choice of a
FIPS 140-2 approved algorithm and using the RNG value from the Exar device as the initial
seed.

The DX SDK provides an API function to retrieve RNG values from the Exar device (see
“Retrieve a Nondeterministic RNG Value from an Exar Device” for more details), and a
process entry that may be used to monitor the RNG statistics (see “Monitoring the RNG
Statistics” for more details).

A.2 Hardware Implementation
Exar's acceleration processors contain an internal RNG module that is used to generate a
random number which may be used to seed a software generated Deterministic Random
Number Bit Generator (DRBG).

The hardware RNG module generates FIPS compliant random number sequences. A high
level block diagram of the RNG is shown in Figure A-1.
DX Software Development Kit User Guide, USR-0039-A04 Page 91
Exar Confidential

The RNG is implemented as 16 shielded, free running ring oscillators, with each ring
containing a different prime number of gate inversions such that all ring oscillators generate
an independent frequency higher than the 125 MHz core clock frequency that is used to
sample the oscillator state. Exact frequencies are dependent on individual component
process factors, operating die temperature, and operating voltage (PVT), but the ratios
should be similar over these process variations.

Synchronizers are used to sample the state of each ring oscillator at the 125 MHz clock.

The synchronized ring oscillator samples are XOR'd together in redundant trees, with the
two paths compared so as to raise an interrupt in the case of a discrepancy (hardware fault
or synchronizer failure).

The selected tree output is fed through logic that performs the serial to parallel conversion
and serves as a whitening LFSR when enabled. This is done at a small integer divide of the
125 MHz core clock.

At a much larger divide of the 125 MHz core clock, the parallel output then enters an output
buffer. The software reads the random value from the output buffer.

Random number hardware registers provide the interface for software to start the random
number hardware engine, retrieve sixteen 32-bit random number values, and configure the
random number hardware engine. Please refer to the XR9240 Data Sheet for a detailed
description of the RNG registers. The Raw Acceleration API provides functions to retrieve a
random number from the RNG module, precluding the need to access the internal registers.

Figure A-1. RNG High Level Block Diagram
DX Software Development Kit User Guide, USR-0039-A04 Page 92
Exar Confidential

A.3 Software Implementation
The DX SDK configures and controls the hardware RNG module. The DX SDK uses the
default reset values for the Exar device RNG registers, however DX SDK allow for
configuration of some RNG settings through parameters in the driver configuration file (see
Section 5.2.1).

The DX SDK, and specifically the Raw Acceleration API, may be used to:

• Retrieve a nondeterministic RNG value from the RNG module

• Test the hardware RNG module

The DX SDK supports NIST SP 800-90 (http://csrc.nist.gov/ publications/nistpubs/800-90/
SP800-90revised_March2007.pdf), and implements the CTR_DRBG that supports AES 128,
192, 256 bit keys, and implements the Dual_EC_DRBG that supports 256, 384, 521 bit
keys. Refer to the Raw Acceleration API User Guide, USR-0040, for details.

In addition, the DX SDK includes a “/proc” entry for “Monitoring the RNG Statistics”.

A.3.1 Retrieve a Nondeterministic RNG Value from an Exar
Device

The DX SDK Raw Acceleration API provides a function to retrieve a RNG value from an Exar
device. Within the DX SDK API, the nondeterministic RNG value retrieved from an Exar
device is referred to as the Raw RNG. Please refer to the Raw Acceleration Application
Programming Interface Reference Guide, USR-0040, for more detailed information.

When called, this function will read the requested number of random numbers directly from
the hardware RNG module.

Figure A-2 depicts the flow for how the DX SDK retrieves a RNG value from the Exar device.
The SDK maintains a pool of random numbers. If the number of requested bytes is larger
than the amount of random numbers stored in the pool, then the SDK will retrieve another
2048 bytes to fill its internal pool buffer. This process will repeat until the requested
amount of random numbers is fulfilled.

The DX SDK implements one RNG object for each Exar device in the system. Each RNG
object may be uniquely seeded by its hardware RNG.

If any of the RNG errors listed in the RNG register section of the Exar device Data Sheet
occur, this function will return a general RNG module error (module code = 11).

DRE_status DRE_rngRequestRaw (
DRE_u32b cardNum,
DRE_u08b *pDataBuf,
DRE_u32b numReq,
DRE_u32b *pNumRet);
DX Software Development Kit User Guide, USR-0039-A04 Page 93
Exar Confidential

A.3.2 RNG Test
The DX SDK meets the FIPS 140-2 Section 4.9.2 requirement for a continuous random
number generator test. The DX SDK automatically runs the RNG test for every 32-bit words
of data retrieved from the hardware.

The RNG test consists of the following steps.

1. Retrieve 16 double words (4 bytes) from the hardware RNG and save them as R0,
R1,…,R15.

2. Verify that R0 != R1, R1!= R2, …, R14 != R15.

Figure A-2. Flow to Retrieve RNG Number from an Exar Device
DX Software Development Kit User Guide, USR-0039-A04 Page 94
Exar Confidential

3. If any of the equations in step 2 are not satisfied, the RNG test fails. Otherwise,
the RNG test passes.

If the RNG test fails, any contiguous duplicated 32-bit words will be discarded, but the Exar
device will continue to process commands. The DX SDK maintains a RNG test failure
counter that is printed to the dresys.log file. The driver log level must be set to Warning or
higher in order to trigger the RNG failure notice. For example,

Sep 01 09:57:38 Warning: RNG engine cardNum = 0 continuous test failed
Previous random value is 0x00000000
Current random value is 0x00000000
Failed RNG generation times are 4
The total number of generated rng data is 1036460256

A.3.3 Monitoring the RNG Statistics
The DX SDK includes a Linux ”/proc” entry that allows users to easily monitor the RNG
status of all Exar devices in the system. As described in Section A.3.1, a per-device pool
buffers the random bytes retrieved from the hardware RNG engine.

To view the RNG status, enter:

The example output below was generated on a system with a single DX card after the
driver was loaded.

----- chip 0 ----- PoolSize: 2048 PoolAvail: 1920 TotalGen: 2112 TestFailCnt: 0
----- chip 1 ----- PoolSize: 2048 PoolAvail: 1920 TotalGen: 2112 TestFailCnt: 0
----- chip 2 ----- PoolSize: 2048 PoolAvail: 1920 TotalGen: 2112 TestFailCnt: 0
----- chip 3 ----- PoolSize: 2048 PoolAvail: 1920 TotalGen: 2112 TestFailCnt: 0

Several comments need to be made about the hardware RNG and DX SDK behavior to
explain the output results.

1. After the hardware RNG module is initialized, the first 64 random bytes are
discarded and not entered into the pool. These 64 bytes will be included in the
TotalGen statistic, but not in the PoolAvail statistic.

2. Every user request for random bytes from the RNG via the API function
DRE_rngRequestRaw() will be serviced by an internal pool buffer whose size is
2048 bytes (PoolSize). If the number of available bytes in the pool (PoolAvail) is
less than the number of random bytes requested, the DX SDK will copy the
existing random bytes in the pool to the user buffer and then request another 2048
random bytes from the Exar device. This flow loops until the requested number of
random bytes have been copied to the user buffer. This process is illustrated in
Figure A-2.

3. For every device probed and initialized when the driver is loaded, POST will retrieve
128 random bytes for its use.

cat /proc/exar/dx_rng_statistics
DX Software Development Kit User Guide, USR-0039-A04 Page 95
Exar Confidential

4. The RNG test defined in Section A.3.2 runs continuously after the driver had been
loaded. The DX SDK maintains a counter for the number of times the test fails.

In the example output above, the total number of generated random bytes is given by
TotalGen = 64+2048 = 2112 bytes. The number of random bytes currently in the pool is
given by the PoolAvail = 2048-128 = 1920 bytes. The number of RNG test failures is given
by TestFailCnt. In general, TestFailCnt will be incremented until a very large number of
random bytes is generated.

A.4 Standards Requirements and Compliance

A.4.1 FIPS Requirements
The publication Federal Information Processing Standards (FIPS) 140-2, section 4.9.2
Conditional Tests, lists the tests that must be performed by a cryptographic module that
contains a continuous random number generator. The continuous random number
generator test states:

If each call to a RNG produces blocks of n bits (where n > 15), the first n-bit block generated after power-up,
initialization, or reset shall not be used, but shall be saved for comparison with the next n-bit block to be
generated. Each subsequent generation of an n-bit block shall be compared with the previously generated
block. The test shall fail if any two compared n-bit blocks are equal.

A.4.2 NIST Requirements
The National Institute of Standards and Technology (NIST) publication Annex C: Approved
Random Number Generators for FIPS PUB 140-2, Security Requirements for Cryptographic
Modules, lists the algorithms that may be used to generate a deterministic random number.

National Institute of Standards and Technology, NIST-Recommended Random Number Generator Based on
ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms January 31, 2005.

For FIPS 140-2 approval, NIST requires that the random number be generated using a
NIST-approved Deterministic Random Bit Generator (DRBG). The DRBG may be seeded
from a hardware source, such as the Exar device RNG. The benefit of this approach is that
the DRBG algorithm can be chosen to be as strong and fast as possible, with the hardware
RNG required to only produce a fairly small (e.g., 128-256 bits), one-time initial random
seed for the DRBG.

Customers will typically use a DRBG to generate cryptographic keys and initialization
vectors.

Cryptographic keys

Section 4.7.1 of FIPS 140-2 states:

An Approved RNG shall be used for the generation of cryptographic keys used by an Approved security
function.

Initialization Vectors (IVs)

Appendix C: Generation of Initialization Vectors in the NIST Special Publication 800-38A -
Recommendations for Block Cipher Modes of Operation states:
DX Software Development Kit User Guide, USR-0039-A04 Page 96
Exar Confidential

There are two recommended methods for generating unpredictable IVs. The first method is to apply the
forward cipher function, under the same key that is used for the encryption of the plaintext, to a nonce. The
nonce must be a data block that is unique to each execution of the encryption operation. For example, the
nonce may be a counter, as described in Appendix B, or a message number. The second method is to
generate a random data block using a FIPS approved random number generator.

A.4.3 NIST Compliance
Exar plans to validate the XR9240 device by NIST as conforming to the Deterministic
Random Bit Generator (DRBG) algorithm as specified in Special Publication 800-90,
Recommendation for Random Number Generation Using Deterministic Random Bit
Generators.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

In order to achieve NIST certification, a special application was run on top of the DX SDK's
Raw Acceleration API to access the RNG and SHA-256 functions of the Exar device to
realize the Hash_DRBG method described in NIST SP 800-90.

The DX SDK version 2.x.x contains a DRBG implementation and API function that when
called returns a NIST SP 800-90 approved deterministic random number.

A.5 References
1. NIST-Recommendation Random Number Generator Based on ANSI X9.31 Appendix

A2.4 Using the 3-Key Triple DES and AES Algorithms,
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf

1. Federal Information Processing Standards (FIPS) 140-2,
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

2. Annex C: Approved Random Number Generators for FIPS PUB 140-2, Security
Requirements for Cryptographic Modules,
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf

3. NIST Special Publication 800-90 Recommendation for Random Number Generator
Using Deterministic Random Bit Generators (Revised),
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

4. NIST Special Publication 800-90 Recommendation for Block Cipher Modes of
Operation, Methods and Techniques,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
DX Software Development Kit User Guide, USR-0039-A04 Page 97
Exar Confidential

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

Appendix B: Exported Software Algorithms
This section documents the exported eLZS and hash software functions.

B.1 eLZS
The eLZS221-C Data Compression Software Library provides a processor independent
software implementation of Exar’s enhanced LZS (eLZS) algorithm. This document refers to
version 1.20.0 of eLZS221-C.

The eLZS functions can be called under any context in kernel or user space.

Note that files compressed with LZS may be decompressed with eLZS, but files compressed
with eLZS cannot be decompressed by LZS. Files compressed or decompressed with
hardware or software may be compressed or decompressed interchangeably with eLZS
hardware or software.
DX Software Development Kit User Guide, USR-0039-A04 Page 98
Exar Confidential

B.1.1 eLZS_Compress()

Include Files:
elzs.h

Syntax:

Description:
The function eLZS_Compress() can be used to perform synchronous software-based eLZS
compression. The detailed declaration of this function is located in the file elzs.h.

The parameter srcPtr is a pointer to source data buffer whose length is specified by the
parameter srcCnt. The argument dstPtr specifies the location of the destination buffer to
hold the compressed data. The parameter dstBufSize defines the maximum length of the
destination buffer. Due to an internal requirement, the source or destination buffer length
cannot exceed 3M.

When the function successfully returns, the destination buffer is filled with the compressed
data, and the return value contains the length of the compressed data stored in the
destination buffer. If the operation fails, this function returns an appropriate error status.
The user should call the boolean macro eLZS_IsError() on the return value to determine if
the operation succeeded or failed (see “Returns” below).

The parameter flags is used to modify the behavior of this function and fine-tune the
compression ratio and speed, as defined in Table B-1 below. The flags may be logically
ORed to set more than one flag option.

eLZS_len_type eLZS_Compress(
const void *srcPtr,
eLZS_len_type srcCnt,
void *dstPtr,
eLZS_len_type dstBufSize,
unsigned int flags);

Table B-1. eLZS Compression Flag Definitions

Flag Value Description
0x000 = ELZS_FLAG_SRCH_LVL_DEFAULT Balanced speed versus compression ratio

(default)
0x001 = ELZS_FLAG_CRC32 A 32-bit CRC will be computed, compressed,

and appended to the destination buffer
0x008 = ELZS_FLAG_EOCD_NO_PAD Do not pad to 32-bit boundary in compression

after EOCD
0x100 = ELZS_FLAG_SRCH_LVL_MAX_SPEED Maximize speed with no regard for compression

ratio
DX Software Development Kit User Guide, USR-0039-A04 Page 99
Exar Confidential

Parameters:

The tables below demonstrate the performance variation of the flags parameter settings
0x000 (balanced), 0x100 (max speed), 0x200 (improved compression at reduced speed)
and 0x300 (optimal compression). Note that the default setting will be appropriate for most
applications.

Table B-2 illustrates the performance on three standard Calgary Corpus data files and over
an average of 18 Calgary Corpus data files.

0x200 = ELZS_FLAG_SRCH_LVL_MAX_COMP Maximize compression ratio with reduced
speed

0x300 = ELZS_FLAG_SRCH_LVL_OPTIMAL Optimize compression ratio with no regard for
speed

All other values are undefined.

srcPtr Input The pointer to the data to be compressed.

srcCnt Input Number of source data bytes to be compressed.

dstPtr Input/Output Pointer to where compressed data will be stored.

dstBufSize Input Size in bytes of the destination buffer.

flags Input Flags used to modify the behavior of the function.
See Table B-1.

Table B-2. Calgary Corpus Performance Test Results

Calgary
Filename

Balanced Max speed Improved Comp Optimal Comp

BIB Comp ratio =
1.68:1
Speed = 41.3
clocks/byte

Comp ratio =
1.50:1
Speed = 24.8
clocks/byte

Comp ratio =
1.95:1
Speed = 92.0
clocks/byte

Comp ratio =
2.05:1
Speed = 559.9
clocks/byte

GEO Comp ratio =
1.25:1
Speed = 42.9
clocks/byte

Comp ratio =
1.18:1
Speed = 26.9
clocks/byte

Comp ratio =
1.31:1
Speed = 95.7
clocks/byte

Comp ratio =
1.37:1
Speed = 815.9
clocks/byte

Table B-1. eLZS Compression Flag Definitions

Flag Value Description
DX Software Development Kit User Guide, USR-0039-A04 Page 100
Exar Confidential

PIC Comp ratio =
6.02:1
Speed = 11.0
clocks/byte

Comp ratio =
5.71:1
Speed = 8.5
clocks/byte

Comp ratio =
6.76:1
Speed = 580.9
clocks/byte

Comp ratio =
7.04:1
Speed = 5533.3
clocks/byte

Average
of 18 files

Comp ratio =
1.92:1
Speed = 37.76
clocks/byte

Comp ratio =
1.72:1
Speed = 23.23
clocks/byte

Comp ratio =
2.22:1
Speed = 279.03
clocks/byte

Comp ratio =
2.33:1
Speed = 1053.21
clocks/byte

Test setup: Intel Core 2 Duo running 64-bit Windows 7 Enterprise. Compiled with 64-bit MSVC
2008 compiler with optimization setting /O2. Block size = 16K

Table B-2. Calgary Corpus Performance Test Results

Calgary
Filename

Balanced Max speed Improved Comp Optimal Comp
DX Software Development Kit User Guide, USR-0039-A04 Page 101
Exar Confidential

Table B-3 shows the performance using standard Canterbury Corpus data.

Returns:
The boolean macro eLZS_IsError() should be called on the return value of
eLZS_Compress() to determine the status of the compression operation. If eLZS_IsError()
returns false, the function completed without errors and the return value represents the
number of bytes of compressed data in the destination buffer. If eLZS_IsError() returns
true, the destination buffer will not be filled with compressed data and the return value will
contain one of the error codes defined below.

Table B-3. Canterbury Corpus Performance Test Results

Calgary
Filename

Balanced Max speed Improved Comp Optimal Comp

ALICE29 Comp ratio =
1.70:1
Speed = 44.6
clocks/byte

Comp ratio =
1.50:1
Speed = 26.2
clocks/byte

Comp ratio =
1.99:1
Speed = 114.0
clocks/byte

Comp ratio =
2.10:1
Speed = 708.3
clocks/byte

PTT5 Comp ratio =
6.02:1
Speed = 11.0
clocks/byte

Comp ratio =
5.71:1
Speed = 8.4
clocks/byte

Comp ratio =
6.76:1
Speed = 585.7
clocks/byte

Comp ratio =
7.04:1
Speed = 5534.2
clocks/byte

PLRABN1
2.TXT

Comp ratio =
1.53:1
Speed = 49.2
clocks/byte

Comp ratio =
1.40:1
Speed = 27.1
clocks/byte

Comp ratio =
1.78:1
Speed = 124.8
clocks/byte

Comp ratio =
1.89:1
Speed = 647.0
clocks/byte

Average
of 11 files

Comp ratio =
2.41:1
Speed = 34.33
clocks/byte

Comp ratio =
2.19:1
Speed = 21.16
clocks/byte

Comp ratio =
2.74:1
Speed = 185.58
clocks/byte

Comp ratio =
2.86:1
Speed = 1463.26
clocks/byte

Test configuration: Intel Core 2 Duo running 64-bit Windows 7 Enterprise. Compiled with 64-bit
MSVC 2008 compiler with optimization setting /O2. Block size = 16K

Error Value Description

ELZS_ERROR_SRC_UNDERRUN -1 Source data corrupted.

ELZS_ERROR_DST_OVERFLOW -2 Not enough space in destination buffer to
store the result

ELZS_ERROR_BAD_TOKEN -3 Source data corrupted.

ELZS_ERROR_BAD_CRC -4 CRC verification failed.

ELZS_ERROR_BAD_RAW_LEN -5 Source data corrupted.

ELZS_ERROR_BAD_RAW_TOK -6 Source data corrupted.
DX Software Development Kit User Guide, USR-0039-A04 Page 102
Exar Confidential

B.1.2 eLZS_Compress_Description()

Include Files:
elzs.h

Syntax:

Description:
This function is used to return a textual description of the value that was set for the
compression performance settings using the flags parameter.

Parameters:

Returns:
This function returns the compression performance setting.

const char *eLZS_Compress_Description(unsigned int flags);

flags Input Returns the compression performance.
0x000 = balanced speed versus compression ratio

(default)
0x100 = maximize speed at expense of

compression ratio
0x200 = improved compression ratio with reduced

speed
0x300 = maximize compression ratio at expense of

speed
All other values are undefined.
DX Software Development Kit User Guide, USR-0039-A04 Page 103
Exar Confidential

B.1.3 eLZS_Decompress()

Include Files:
elzs.h

Syntax:

Description:
The function eLZS_Decompress() can be used to perform synchronous software-based eLZS
decompression. The detailed declaration of this function is located in the file elzs.h.

The parameter srcPtr is a pointer to source data buffer whose length is specified by the
parameter srcCnt. The argument dstPtr specifies the location of the destination buffer to
hold the decompressed data. The parameter dstBufSize defines the maximum length of
the destination buffer. Due to an internal requirement, the source or destination buffer
length cannot exceed 3M.

When the function successfully returns, the destination buffer is filled with the
decompressed data, and the return value contains the length of the decompressed data
stored in the destination buffer. If the operation fails, this function returns an appropriate
error status. The user should call the boolean macro eLZS_IsError() on the return value to
determine if the operation succeeded or failed (see “Returns” below).

The parameter flags is used to modify the behavior of this function, as explained in Table
B-4 below. The flags may be logically ORed to set more than one flag option.

eLZS_len_type eLZS_Decompress (
const void *srcPtr,
eLZS_len_type srcCnt,
void *dstPtr,
eLZS_len_type dstBufSize,
unsigned int flags);

Table B-4. eLZS Decompression Flag Definitions

Flag Value Description
0x001 = ELZS_FLAG_CRC32 Decompress and verify the CRC
0x002 = ELZS_FLAG_APPEND_CNT Silently append consumed byte count to

decompressed data
0x004 = ELZS_FLAG_EOCD_CONTINUE Continue decompressing after EOCD
0x016 = ELZS_FLAG_ERR_UNUSED_SRC If enabled, the ELZS_ERROR_SRC_UNDERRUN

error will be returned if there are unused
decompressed source bytes after the EOCD
token.
This flag is ignored if
ELZS_FLAG_EOCD_CONTINUE flag is set.

All other values are undefined.
DX Software Development Kit User Guide, USR-0039-A04 Page 104
Exar Confidential

Parameters:

Returns:
The boolean macro eLZS_IsError() should be called on the return value of
eLZS_Decompress() to determine the status of the decompress operation. If eLZS_IsError()
returns false, the function completed without errors and the return value represents the
number of bytes of decompressed data in the destination buffer. If eLZS_IsError() returns
true, the destination buffer will not be filled with decompressed data and the return value
will contain one of the error codes defined below.

srcPtr Input Pointer to the data to be decompressed.

srcCnt Input Number of source data bytes to be decompressed.

dstPtr Input/Output Pointer to where decompressed data will be stored.

dstBufSize Input Size in bytes of the destination buffer.

flags Input Flags used to modify the behavior of the function.
See Table B-4.

Error Value Description

ELZS_ERROR_SRC_UNDERRUN -1 Source data corrupted.

ELZS_ERROR_DST_OVERFLOW -2 Not enough space in destination buffer to
store the result

ELZS_ERROR_BAD_TOKEN -3 Source data corrupted.

ELZS_ERROR_BAD_CRC -4 CRC verification failed.

ELZS_ERROR_BAD_RAW_LEN -5 Source data corrupted.

ELZS_ERROR_BAD_RAW_TOK -6 Source data corrupted.
DX Software Development Kit User Guide, USR-0039-A04 Page 105
Exar Confidential

B.2 DRE_swHashSha256()
Include Files:
dre_api.h, dre_swlib_priv.h

Syntax:

Description:
The function DRE_swHashSha256() can be used to perform synchronous software-based
stateful and stateless SHA256 hash.

Stateful SHA256 hash operations require multiple calls to this function. The hash result for
the intermediate calls are partial results that are then passed back as an input for the
subsequent calls to this function. Stateless SHA256 hash operations are processed in a
single pass.

The operation is controlled by the parameter flag, as shown in the table below.

The parameter src is a pointer to the source data buffer whose length is specified by the
parameter srcLen. For stateful SHA256 operations, the source data buffer size must be a
multiple of 64 bytes (the underlying hash iteration block size for SHA256) for the first and
middle call to DRE_swHashSha256(), otherwise the error DRE_ERR_SW_INVALID_ARG will
be returned.

The parameter hashBuf specifies the location of the destination buffer that holds the hash
result. Depending on the setting of the parameter flag, the result is either a partial hash
(if flag is DRE_PKT_FIRST or DRE_PKT_MIDDLE) or a final hash (if flag is
DRE_PKT_LAST).

DRE_status DRE_swHashSha256(
const DRE_u08b *src,
DRE_u32b srcLen,
const DRE_u08b *inIhv,
DRE_u32b ihvLen,
DRE_u08b *hashBuf,
DRE_u64b totalBytes,
DRE_u32b flag);

Table B-5. swHashSha256 Flag Definitions

Flag Value Description
DRE_PKT_FIRST The first data block of a stateful SHA256 hash.
DRE_PKT_MIDDLE The middle data blocks of a stateful SHA256 hash.
DRE_PKT_LAST The last data block of a stateful SHA256 hash.
DRE_PKT_FIRST & DRE_PKT_LAST The entire data block of stateless SHA256 hash.
All other values are undefined.
DX Software Development Kit User Guide, USR-0039-A04 Page 106
Exar Confidential

The parameter inIhv is the partial hash for a stateful SHA256 operation that is generated
by the previous call to DRE_swHashSha256(). The partial hash result must be passed as
inIhv in the following call to DRE_swHashSha256(). The partial hash length is denoted by
ihvLen, and must be set to 32 bytes for SHA256.

The parameter totalBytes is required if flag contains DRE_PKT_LAST. The parameter
totalBytes is used to pad the last data block of the hash.

Parameters:

Returns:
Call DRE_IS_RESULT_ERR() to determine the return status. If the macro returns
DRE_FALSE, the operation finished successfully, otherwise, an error occurred.

src Input Pointer to the source data buffer to be hashed.
This parameter cannot be null.

srcLen Input Number of bytes in the source data buffer.
This parameter cannot be zero.

inIhv Input Pointer to the partial hash returned by the previous
call to this function.
This parameter is required for stateful operations if
flag is set to DRE_PKT_MIDDLE or
DRE_PKT_LAST, otherwise the error
DRE_ERR_SW_INVALID_ARG will be returned.

ihvLen Input Number of bytes in the partial hash buffer.
This parameter is required for stateful operations if
flag is set to DRE_PKT_MIDDLE or
DRE_PKT_LAST, otherwise the error
DRE_ERR_SW_INVALID_ARG will be returned.
The value of this parameter will always be 32 bytes
for SHA256 hash.

hashBuf Output Pointer to the buffer that will hold the hash result.
This parameter cannot be null.

totalBytes Input Total number of bytes to be hashed.

flag Input Flag that controls the hash operation. See Table B-
5.
DX Software Development Kit User Guide, USR-0039-A04 Page 107
Exar Confidential

Error Description

DRE_OK The command completed successfully without any
errors.

DRE_ERR_SW_INVALID_ARG The command failed due to an invalid parameter.
DX Software Development Kit User Guide, USR-0039-A04 Page 108
Exar Confidential

I Document Revision History
This section lists the additions, deletions, and modifications made to this document for each
release of this document.

Document Revision A01
Initial release.

Document Revision A02
Update 1. Updated for DX SDK version 2.0.0Lb thoughout.
Update 2. Section 7.1.8.2 Global Configuration Settings: changed default setting of

cmd.
Update 3. Section 7.1.8.3 Raw Acceleration Configuration Settings: changed default

setting of src_data_file.
Update 4. Section 7.3.1.3 Synchronous FPGA Mode: added this new section.
Update 5. Section 7.3.1.4 Asynchronous FPGA Mode: added this new section.

Document Revision A03
Update 1. Updated for DX SDK version 2.0.0L thoughout.

Update 2. Section 1 Introduction: updated list of supported OS.
Update 3. Section 2.1.2 Encryption/Decryption Algorithms: added reference to IV

replacement feature.
Update 4. Section 2.1.3 Authentication Algorithms: removed reference to slice-hash.
Update 5. Section 4.2.2 Driver Memory Allocation: updated values for required memory.
Update 6. Section 5.1 Initialization Sequence: added step to ignore the first 16 words of

the RNG output.
Update 7. Section 5.2.1 Host Initialization Settings: removed caution about degraded

performance for pcie_error_recovery_enable.
Update 8. Section 5.2.4 Temperature Sensor Settings: removed statement about

erratum in preliminary hardware.
Update 9. Section 5.3.3.4 Flash Access Module: removed note that this feature is not

supported for the beta release.
Update 10. Section 8.3 Single Command Error Handling: added text describing overflow

error during command processing.
Update 11. Section 8.5 Overheated Condition Error Handling: removed note that this

feature is not supported for the beta release.
Update 12. Section 8.6.2 Link Speed and Width Degradation: added this new section.
Update 13. Section 8.7 Data Corruption Error Handling: replaced statement about PCIe

data corruption.
Update 14. Section A.3.3 Monitoring the RNG Statistics: renamed the proc entry.

Document Revision A04
Update 1. Updated for DX SDK version 2.1.0L thoughout.

Update 2. Section 1 Introduction: added new supported operating systems. SLES11 SP2
kernel version 3.0.10 and Fedora 19 kernel version 3.9.4
DX Software Development Kit User Guide, USR-0039-A04 Page 109
Exar Confidential

Update 3. Section 3.2.2 Stateful Sessions: added ability to resubmit single stateful
commands if the failure was recoverable.

Update 4. Section 4.2.2 Driver Memory Allocation: added formula for calculating the
required memory.

Update 5. Section 5.1 Initialization Sequence: added last step of running POST.
Update 6. Section 5.2.1 Driver Host Initialization Settings: changed default setting for

notification_mode to interrupt mode using a tasklet. Updated description for
how the SDK manages the pp and pk max_key_num tables. For the
parameter max_session_num, removed the text about how the table entries
are managed and added description of typical session sizes. Added new
parameter cpu_dma_zero_latency.

Update 7. Section 5.2.2 Command Structure Settings: changed default setting for
cmds_per_ring to 4096 and removed text about large vs small sized packets.

Update 8. Section 5.3.3.4 Flash Access Module: removed note saying that this feature is
not currently supported.

Update 9. Section 7.1.8.1 Demo Test Configuration Settings: added description of
running several demo tests simultaneously.

Update 10. Section 7.1.8.2 Global Configuration Settings: added parameters stop_sec
and sess_per_thread. Added setting of zero to thread and changed default
value to zero. Changed default value of max_per_run to 200.

Update 11. Section 7.1.8.3 Raw Acceleration Configuration Settings: changed default
value for async to asynchronous. Updated the description and default setting
for en_alg_conf. Changed the default setting for comp_algo to DEFLATE.
Added the parameter stateful_comp.

Update 12. Section 7.1.8.4 Public Key Configuration Settings: changed default setting for
pk_algo to RSA.

Update 13. Section 7.2 sdemo Application: added description of how the source data is
handled for stateful comp commands.

Update 14. Section 7.2.1.1 File Settings: corrected default values for both src_data_file
and dst_data_file.

Update 15. Section 7.2.1.2 Transform Settings: updated default value for direction.
Changed name of parameter algo to op_type and it setting PASSTH to
PASSTHRU. Added the new parameters stateful_comp and block_size.
Changed valid options for seg_hash_algo to reflect encode only and encode/
decode only.

Update 16. Section 7.4.2 Status Tool: removed help option.
Update 17. Section 8.3 Single Command Error Handling: added ability to resubmit single

stateful commands if the failure was recoverable.
Update 18. Section 8.5 Overheated Condition Error Handling: added description of

overheated error detection and handling based on interrupt instead of
polling.

Update 19. Section 8.7 Data Corruption Error Handling: updated description as
DRE_92XX_HOT_RESET_ENABLE is enabled with 2.1.0L.
DX Software Development Kit User Guide, USR-0039-A04 Page 110
Exar Confidential

48720 Kato Road
Fremont, CA 94538
p: 510.668.7000

www.exar.com

Exar Confidential

http://www.hifn.com
http://www.hifn.com

	List of Figures
	List of Tables
	Preface
	Abbreviations
	1 Introduction
	1.1 Software Architecture
	1.2 Software Modules
	1.2.1 Service Assistant Infrastructure (SAI)
	1.2.2 API Layer
	1.2.3 Exar Service Framework (ESF)
	1.2.4 Device Specific Driver (DSD)
	1.2.5 Software Library

	1.3 Applications

	2 Features
	2.1 Symmetric Key Algorithms
	2.1.1 Compression/Decompression Algorithms
	2.1.2 Encryption/Decryption Algorithms
	2.1.3 Authentication Algorithms

	2.2 Public Key (PK) Algorithms
	2.3 Random Number Generator (RNG)

	3 Session Structure
	3.1 Terminology
	3.2 Raw Acceleration Sessions
	3.2.1 Raw Acceleration Session Model
	3.2.2 Stateful Sessions

	4 System Considerations
	4.1 Application Considerations
	4.1.1 Synchronous/Asynchronous Mode
	4.1.2 Kernel/User Mode
	4.1.3 Single/Multi-Threaded Applications
	4.1.4 Interrupt Modes

	4.2 Memory Considerations
	4.2.1 Scatter/Gather Memory Scheme
	4.2.2 Driver Memory Allocation

	4.3 API Buffer Requirements
	4.3.1 Alignment Requirements
	4.3.2 Expansion Requirements

	4.4 Performance Considerations

	5 Driver Module
	5.1 Initialization Sequence
	5.2 Driver Configuration File
	5.2.1 Host Initialization Settings
	5.2.2 Command Structure Settings
	5.2.3 Log file Settings
	5.2.4 Temperature Sensor Settings

	5.3 Driver Components
	5.3.1 Service Assistant Infrastructure
	5.3.1.1 OS Abstraction Layer (OSAL)
	5.3.1.2 Log
	5.3.1.3 XML File Parser

	5.3.2 Exar Service Framework
	5.3.2.1 Session Manager Module
	5.3.2.2 Packet Processing Module
	5.3.2.3 Load Balancing Module
	5.3.2.4 Device Manager Module
	5.3.2.5 Results Retrieval Module
	5.3.2.6 Event Manager Module
	5.3.2.7 Key Manager Module
	5.3.2.8 User Space Transaction Manager Module
	5.3.2.9 Public Key Manager Module
	5.3.2.10 Raw RNG Module

	5.3.3 Device Specific Driver Module
	5.3.3.1 Linux PCIe Driver Module
	5.3.3.2 Initialization and Configuration Module
	5.3.3.3 Register Access Module
	5.3.3.4 Flash Access Module
	5.3.3.5 DMA Manager Module

	6 Operation
	6.1 Raw Acceleration API Processing Steps
	6.1.1 Initialize the SDK
	6.1.2 Retrieve the Hardware Information
	6.1.3 Create Keys
	6.1.3.1 Create Symmetric Keys
	6.1.3.2 Create Public Keys
	6.1.3.3 Create a Session
	6.1.3.4 Submit Data to the Session
	6.1.3.5 Submit Data for PK Operation
	6.1.3.6 Close the Session

	6.1.4 Destroy Keys
	6.1.4.1 Destroy Symmetric Keys
	6.1.4.2 Destroy Public Key

	6.1.5 Uninitialize the SDK
	6.1.6 Raw Acceleration Session Data Transform Flow

	7 Application Programs
	7.1 demo Application
	7.1.1 Initiators
	7.1.2 CPU Load Calculator
	7.1.3 Thread Pool
	7.1.4 RNG
	7.1.5 DRBG
	7.1.6 PK Performance
	7.1.7 Packet Processor Performance
	7.1.8 demo Configuration File
	7.1.8.1 Test Configuration Settings
	7.1.8.2 Global Configuration Settings
	7.1.8.3 Raw Acceleration Configuration Settings
	7.1.8.4 Public Key Configuration Settings
	7.1.8.5 RNG Configuration Settings
	7.1.8.6 DRBG Configuration Settings

	7.2 sdemo Application
	7.2.1 sdemo Configuration Files
	7.2.1.1 File Settings
	7.2.1.2 Transform Settings

	7.2.2 sdemo Key File
	7.2.3 sdemo IVAAD File
	7.2.4 sdemo DRBG File

	7.3 example Application
	7.3.1 Raw Session example Application
	7.3.1.1 Synchronous Mode
	7.3.1.2 Asynchronous Mode
	7.3.1.3 Synchronous FPGA Mode
	7.3.1.4 Asynchronous FPGA Mode

	7.3.2 PK example Application

	7.4 Debugging Tools
	7.4.1 Monitor Tool
	7.4.2 Status Tool
	7.4.3 Diagnostic Tool

	8 Error Handling
	8.1 Definition of Error Status Codes
	8.1.1 Error Category
	8.1.2 Error Flags

	8.2 Failover
	8.3 Single Command Error Handling
	8.4 Hardware Timeout Error Handling
	8.5 Overheated Condition Error Handling
	8.6 PCIe Error Handling
	8.6.1 Register Access Error Detection
	8.6.2 Link Speed and Width Degradation

	8.7 Data Corruption Error Handling

	Appendix A: Usage and Standards Compliance of the Random Number Generator
	A.1 Overview
	A.2 Hardware Implementation
	A.3 Software Implementation
	A.3.1 Retrieve a Nondeterministic RNG Value from an Exar Device
	A.3.2 RNG Test
	A.3.3 Monitoring the RNG Statistics

	A.4 Standards Requirements and Compliance
	A.4.1 FIPS Requirements
	A.4.2 NIST Requirements
	A.4.3 NIST Compliance

	A.5 References

	Appendix B: Exported Software Algorithms
	B.1 eLZS
	B.1.1 eLZS_Compress()
	B.1.2 eLZS_Compress_Description()
	B.1.3 eLZS_Decompress()

	B.2 DRE_swHashSha256()

	I Document Revision History

